ترغب بنشر مسار تعليمي؟ اضغط هنا

The Luminosity & Mass Function of the Trapezium Cluster: From B stars to the Deuterium Burning Limit

36   0   0.0 ( 0 )
 نشر من قبل August A. Muench
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Muench




اسأل ChatGPT حول البحث

We use the results of a new, multi-epoch, multi-wavelength, near-infrared census of the Trapezium Cluster in Orion to construct and to analyze the structure of its infrared (K band) luminosity function. Specifically, we employ an improved set of model luminosity functions to derive this clusters underlying Initial Mass Function (IMF) across the entire range of mass from OB stars to sub-stellar objects down to near the deuterium burning limit. We derive an IMF for the Trapezium Cluster that rises with decreasing mass, having a Salpeter-like IMF slope until near ~0.6 M_sun where the IMF flattens and forms a broad peak extending to the hydrogen burning limit, below which the IMF declines into the sub-stellar regime. Independent of the details, we find that sub-stellar objects account for no more than ~22% of the total number of likely cluster members. Further, the sub-stellar Trapezium IMF breaks from a steady power-law decline and forms a significant secondary peak at the lowest masses (10-20 times the mass of Jupiter). This secondary peak may contain as many as ~30% of the sub-stellar objects in the cluster. Below this sub-stellar IMF peak, our KLF modeling requires a subsequent sharp decline toward the planetary mass regime. Lastly, we investigate the robustness of pre-main sequence luminosity evolution as predicted by current evolutionary models, and we discuss possible origins for the IMF of brown dwarfs.

قيم البحث

اقرأ أيضاً

We report very intense and variable Halpha emission (pseudo-equivalent widths of ~180, 410 A) of S Ori 55, a probable free-floating, M9-type substellar member of the young sigma Orionis open star cluster. After comparison with state-of-the-art evolut ionary models, we infer that S Ori 55 is near or below the cluster deuterium-burning mass borderline, which separates brown dwarfs and planetary-mass objects. We find its mass to be 0.008-0.015 Msun for ages between 1 Myr and 8 Myr, with ~0.012 Msun the most likely value at the cluster age of 3 Myr. The largest Halpha intensity reached the saturation level of log L(Halpha)/L(bol) = -3. We discuss several possible scenarios for such a strong emission. We also show that sigma Orionis M and L dwarfs have in general more Halpha emission than their older field spectral counterparts. This could be due to a decline in the strength of the magnetic field with age in brown dwarfs and isolated planetary-mass objects, or to a likely mass accretion from disks in the very young sigma Orionis substellar members.
82 - Nicola Da Rio 2011
We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30x30), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a tech nique to determine stellar effective temperatures from optical colors, nearly doubling the previously available number of objects with effective temperature determinations in this benchmark cluster. Our technique utilizes colors from deep photometry in the I-band and in two medium-band filters at lambda~753 and 770nm, which accurately measure the depth of a molecular feature present in the spectra of cool stars. From these colors we can derive effective temperatures with a precision corresponding to better than one-half spectral subtype, and importantly this precision is independent of the extinction to the individual stars. Also, because this technique utilizes only photometry redward of 750nm, the results are only mildly sensitive to optical veiling produced by accretion. Completing our census with previously available data, we place some 1750 sources in the Hertzsprung-Russel diagram and assign masses and ages down to 0.02 solar masses. At faint luminosities, we detect a large population of background sources which is easily separated in our photometry from the bona fide cluster members. The resulting initial mass function of the cluster has good completeness well into the substellar mass range, and we find that it declines steeply with decreasing mass. This suggests a deficiency of newly formed brown dwarfs in the cluster compared to the Galactic disk population.
123 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we in vestigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorp ius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.
We report the discovery of TOI 694 b and TIC 220568520 b, two low-mass stellar companions in eccentric orbits around metal-rich Sun-like stars, first detected by the Transiting Exoplanet Survey Satellite (TESS). TOI 694 b has an orbital period of 48. 05131$pm$0.00019 days and eccentricity of 0.51946$pm$0.00081, and we derive a mass of 89.0$pm$5.3 $M_J$ (0.0849$pm$0.0051 $M_odot$) and radius of 1.111$pm$0.017 $R_J$ (0.1142$pm$0.0017 $R_odot$). TIC 220568520 b has an orbital period of 18.55769$pm$0.00039 days and eccentricity of 0.0964$pm$0.0032, and we derive a mass of 107.2$pm$5.2 $M_J$ (0.1023$pm$0.0050 $M_odot$) and radius of 1.248$pm$0.018 $R_J$ (0.1282$pm$0.0019 $R_odot$). Both binary companions lie close to and above the Hydrogen burning mass threshold that separates brown dwarfs and the lowest mass stars, with TOI 694 b being 2-$sigma$ above the canonical mass threshold of 0.075 $M_odot$. The relatively long periods of the systems mean that the magnetic fields of the low-mass companions are not expected to inhibit convection and inflate the radius, which according to one leading theory is common in similar objects residing in short-period tidally-synchronized binary systems. Indeed we do not find radius inflation for these two objects when compared to theoretical isochrones. These two new objects add to the short but growing list of low-mass stars with well-measured masses and radii, and highlight the potential of the TESS mission for detecting such rare objects orbiting bright stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا