ﻻ يوجد ملخص باللغة العربية
We present Keck spectroscopy and UKIRT near-IR imaging observations of two 170micron-selected sources from the ISO-FIRBACK survey which have faint counterparts in the optical, and r-K~5. Both sources were expected to lie at z>1 based on their far-infrared, submillimeter and radio fluxes, assuming a similar spectral energy distribution to the local ultra-luminous infrared galaxy (ULIRG) Arp220. However, our spectroscopy indicates that the redshifts of these galaxies are z<1: z=0.91 for FN1-64 and z=0.45 for FN1-40. While the bolometric luminosities of both galaxies are similar to Arp220, it appears that the dust emission in these systems has a characteristic temperature of 30K much cooler than the ~50K seen in Arp220. Neither optical spectrum shows evidence of AGN activity. If these galaxies are characteristic of the optically faint FIRBACK population, then evolutionary models of the far-infrared background must include a substantial population of cold, luminous galaxies. These galaxies provide an important intermediate comparison between the local luminous IR galaxies, and the high redshift submillimeter-selected galaxies, for which there is very little information available.
The FIRBACK (Far Infrared BACKground) survey is one of the deepest imaging surveys carried out at 170 microns with ISOPHOT onboard ISO, and is aimed at the study of the structure of the Cosmic Far Infrared Background. This paper provides the analysis
From a search of a ~ 2400 square degree region covered by both the SDSS and UKIDSS databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galax
We discuss a sample of 29 AGN (16 narrow-lined and 13 broad-lined) discovered in a spectroscopic survey of ~1000 star-forming Lyman-break galaxies (LBGs) at z~3. Reaching apparent magnitudes of R_{AB}=25.5, the sample includes broad-lined AGN approxi
We study the properties of very faint, sub-L* Lyman break galaxies at z~2-5 - thus far a largely neglected but numerically and energetically very important population. We find that the LBG luminosity function undergoes luminosity-dependent evolution:
We combine deep Subaru near-infrared images of the massive lensing clusters A2390 and A370 with Keck optical data to map the spectral energy distributions (SEDs) of Chandra X-ray sources lying behind the clusters. The three sources behind A2390 are f