ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and Radio Properties of Extragalactic Sources Observed by the FIRST and SDSS Surveys

66   0   0.0 ( 0 )
 نشر من قبل Zeljko Ivezic
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the optical and radio properties of 30,000 FIRST sources positionally associated with an SDSS source in 1230 deg$^2$ of sky. The majority (83%) of the FIRST sources identified with an SDSS source brighter than r=21 are optically resolved. We estimate an upper limit of 5% for the fraction of quasars with broad-band optical colors indistinguishable from those of stars. The distribution of quasars in the radio flux -- optical flux plane supports the existence of the quasar radio-dichotomy; 8% of all quasars with i<18.5 are radio-loud and this fraction seems independent of redshift and optical luminosity. The radio-loud quasars have a redder median color by 0.08 mag, and a 3 times larger fraction of objects with red colors. FIRST galaxies represent 5% of all SDSS galaxies with r<17.5, and 1% for r<20, and are dominated by red galaxies. Magnitude and redshift limited samples show that radio galaxies have a different optical luminosity distribution than non-radio galaxies selected by the same criteria; when galaxies are further separated by their colors, this result remains valid for both blue and red galaxies. The distributions of radio-to-optical flux ratio are similar for blue and red galaxies in redshift-limited samples; this similarity implies that the difference in their luminosity functions, and resulting selection effects, are the dominant cause for the preponderance of red radio galaxies in flux-limited samples. We confirm that the AGN-to-starburst galaxy number ratio increases with radio flux, and find that radio emission from AGNs is more concentrated than radio emission from starburst galaxies (abridged).



قيم البحث

اقرأ أيضاً

123 - Marcel A. Agueros 2005
We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represe nt ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS main spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.
Although the primary goal of ESAs Planck mission is to produce high resolution maps of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB), its high-sensitivity all-sky surveys of extragalactic sources at 9 frequenc ies in the range 30--860 GHz will constitute a major aspect of its science products. In particular, Planck surveys will provide key information on several highly interesting radio source populations, such as Flat Spectrum Radio Quasars, BL Lac objects, and, especially, extreme GHz Peaked Spectrum sources, thought to correspond to the very earliest phases of the evolution of radio sources. Above 100 GHz, Planck will provide the first all-sky surveys, that are expected to supply rich samples of highly gravitationally amplified dusty proto-galaxies and large samples of candidate proto-clusters at z~2-3, thus shedding light on the evolution of large scale structure across the cosmic epoch when dark energy should start dominating the cosmic dynamics.
375 - L. Toffolatti 1999
Confusion noise due to extragalactic sources is a fundamental astrophysical limitation for experiments aimed at accurately determining the power spectrum of the Cosmic Microwave Background (CMB) down to arcmin angular scales and with a sensitivity $D elta T/T simeq 10^{-6}$. At frequencies $lsim 200-300$ GHz, the most relevant extragalactic foreground hampering the detection of intrinsic CMB anisotropies is constituted by radio loud Active Galactic Nuclei (AGN), including ``flat--spectrum radiogalaxies, quasars, BL-LACs and blazars. We review our present understanding of astrophysical properties, spectra, and number counts of the above classes of sources. We also study the angular power spectrum of fluctuations due both to Poisson distributed and clustered radio sources and give preliminary predictions on the power spectrum of their polarized components. Furthermore, we discuss the capabilities of future space missions (NASAs MAP, Bennett et al. 1995; ESAs Planck Surveyor, Bersanelli et al. 1996) in studying bright radio sources over an almost unexplored frequency interval where spectral signatures, essential for the understanding of the physical processes, show up.
123 - J. Russell 2008
We report on a statistical study of the 51 radio galaxies at the millijansky flux level from the Faint Images of the Radio Sky at Twenty centimeters, including their optical morphologies and structure obtained with the Hubble Space Telescope. Our opt ical imaging is significantly deeper (~2 mag) than previous studies with the superior angular resolution of space-based imaging. We that find 8/51 (16%) of the radio sources have no optically identifiable counterpart to AB~24 mag. For the remaining 43 sources, only 25 are sufficiently resolved in the HST images to reliably assign a visual classification: 15 (60%) are elliptical galaxies, 2 (8%) are late-type spiral galaxies, 1 (4%) is an S0, 3 (12%) are point-like objects (quasars), and 4 (16%) are merger systems. We find a similar distribution of optical types with measurements of the Sersic index. The optical magnitude distribution of these galaxies peaks at I~20.7+-0.5 AB mag, which is ~3 mag brighter than the depth of our typical HST field and is thus not due to the WFPC2 detection limit. This supports the luminosity-dependent density evolutionary model, where the majority of faint radio galaxies typically have L*-optical luminosities and a median redshift of z~0.8 with a relatively abrupt redshift cut-off at z>~2. We discuss our results in the context of the evolution of elliptical galaxies and active galactic nuclei.
203 - M. Obric , Z. Ivezic , P.N. Best 2006
We discuss the panchromatic properties of 99,088 galaxies selected from the SDSS Data Release 1 spectroscopic sample (a flux-limited sample for 1360 deg^2). These galaxies are positionally matched to sources detected by ROSAT, GALEX, 2MASS, IRAS, GB6 , FIRST, NVSS and WENSS. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colors, and emission-line strengths. Using GALEX, SDSS, and 2MASS data, we construct the UV-IR broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, based on SDSS u- and r-band data, supplemented with redshift, the K-band 2MASS magnitudes can be predicted with an rms scatter of only 0.2 mag. When a dust content estimate determined from SDSS data by Kauffmann et al. (2003) is also utilized, this scatter decreases to 0.1 mag. We demonstrate that this dust content is indeed higher for galaxies detected by IRAS and that it can be used to predict measured IRAS 60 micron flux density within a factor of two using only SDSS data. We also show that the position of a galaxy in the emission-line-based Baldwin-Phillips-Terlevich diagram is correlated with the optical light concentration index and u-r color determined from the SDSS broad-band imaging data, and discuss changes in the morphology of this diagram induced by requiring detections at other wavelengths. We study the IR-radio correlation and find evidence that its slope may be different for AGN and star-forming galaxies and related to the H_alpha/H_beta line strength ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا