ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution spectroscopy of metal rich giants in omega Cen: first indication of SNe Ia enrichment

181   0   0.0 ( 0 )
 نشر من قبل Elena Pancino
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Pancino




اسأل ChatGPT حول البحث

We have obtained high-resolution, high S/N spectra for six red giants in omega Cen: three belonging to the recently discovered, metal-rich Red Giant Branch (RGB-a, Pancino et al. 2000) and three to the metal intermediate population (RGB-MInt). Accurate Iron, Copper and alpha-elements (Ca and Si) abundances have been derived and discussed. In particular, we have obtained the first direct abundance determination based on high-resolution spectroscopy for the RGB-a population, <[Fe/H]>=-0.60+/-0.15. Although this value is lower than previous estimates based on Calcium triplet measurements, we confirm that this population is the most metal rich in omega Cen. In addition, we have found a significant difference in the alpha-elements enhancement of the two populations. The three RGB-MInt stars have the expected overabundance, typical of halo and globular clusters stars: <[alpha/Fe]>=+0.29+/-0.01. The three RGB-a stars show, instead, a significantly lower alpha-enhancement: <[alpha/Fe]>=+0.10+/-0.04. We have also detected an increasing trend of [Cu/Fe] with metallicity, similar to the one observed for field stars by Sneden et al. (1991). The observational facts presented in this letter, if confirmed by larger samples of giants, are the first indication that supernovae type Ia ejecta have contaminated the medium from which the metal rich RGB-a stars have formed. The implications for current scenarios on the formation and evolution of omega Cen are briefly discussed.

قيم البحث

اقرأ أيضاً

We analyze spectra of 18 stars belonging to the faintest subgiant branch in omega Centauri (the SGB-a), obtained with GIRAFFE@VLT at a resolution o R~17000 and a S/N ratio between 25 and 50. We measure abundances of Al, Ba, Ca, Fe, Ni, Si, and Ti and we find that these stars have <[Fe/H]>=-0.73 +/- 0.14 dex, similarly to the corresponding red giant branch population (the RGB-a). We also measure <[alpha/Fe]>=+0.40 +/- 0.16 dex, and <[Ba/Fe]>=+0.87 +/- 0.23 dex, in general agreement with past studies. It is very interesting to note that we found a uniform Al abundance, <[Al/Fe]>=+0.32 +/- 0.14 dex, for all the 18 SGB-a stars analysed here, thus supporting past evidence that the usual (anti-)correlations are not present in this population, and suggesting a non globular cluster-like origin of this particular population. In the dwarf galaxy hypothesis for the formation of omega Cen, this population might be the best candidate for the field population of its putative parent galaxy, although some of its properties appear contradictory. It has also been suggested that the most metal-rich population in omega Cen is significantly enriched in helium. If this is true, the traditional abundance analysis techniques, based on model atmospheres with normal helium content, might lead to errors. We have computed helium enhanced atmospheres for three stars in our sample and verified that the abundance errors due to the use of non-enhanced atmospheres are negligible. Additional, indirect support to the enhanced helium content of the SGB-a population comes from our Li upper limits.
80 - B. P. Hema 2018
High-resolution optical spectra are analyzed for two of the four metal rich mildly hydrogen-poor or helium-enhanced giants discovered by Hema and Pandey (2014) along with their comparison normal (hydrogen-rich) giants of Omega Cen. The strengths of t he MgH bands in the spectra of the program stars are analyzed for their derived stellar parameters. The observed spectra of the sample (hydrogen-poor) stars (LEID 39048 and LEID 34225) show weaker MgH bands unlike in the spectra of the normal comparison giants (LEID 61067 and LEID 32169). The magnesium abundance derived from MgH bands is less by 0.3 dex or more for LEID 39048 and LEID 34225, than that derived from Mg I lines. This difference, cannot be reconciled by making the changes to the stellar parameters within the uncertainties. This difference in the magnesium abundances derived from Mg I lines and from the MgH band is unacceptable. This difference is attributed to the hydrogen-deficiency or helium-enhancement in their atmospheres. These metal rich hydrogen-poor or helium-rich giants provide an important link to the evolution of the metal-rich sub population of Omega Cen. These stars provide the first direct spectroscopic evidence for the presence of the He-enhancement in the metal rich giants of Omega Cen.
225 - B. P. Hema 2020
The helium-enriched (He-enriched) metal-rich red giants of Omega Centauri, discovered by Hema and Pandey using the low-resolution spectra from the Vainu Bappu Telescope (VBT) and confirmed by the analyses of the high-resolution spectra obtained from the HRS-South African Large Telescope (SALT) for LEID 34225 and LEID 39048, are reanalysed here to determine their degree of He-enhancement/hydrogen-deficiency (H-deficiency). The observed MgH band combined with model atmospheres with differing He/H ratios are used for the analyses. The He/H ratios of these two giants are determined by enforcing the fact that the derived Mg abundances from the MgI lines and from the subordinate lines of the MgH band must be same for the adopted model atmosphere. The estimated He/H ratios for LEID 34225 and LEID 39048 are 0.15+/-0.04 and 0.20+/-0.04, respectively, whereas the normal He/H ratio is 0.10. Following the same criteria for the analyses of the other two comparison stars (LEID 61067 and LEID 32169), a normal He/H ratio of 0.10 is obtained. The He/H ratio of 0.15-0.20 corresponds to a mass fraction of helium (Z(He)=Y) of about 0.375-0.445. The range of helium enhancement and the derived metallicity of the program stars are in line with those determined for Omega Cen blue main-sequence stars. Hence, our study provides the missing link for the evolutionary track of the metal-rich helium-enhanced population of Omega Centuari. This research work is the very first spectroscopic determination of the amount of He-enhancement in the metal-rich red giants of Omega Centauri using the MgI and MgH lines.
49 - Q. Ma , U. Maio , B. Ciardi 2017
We use numerical N-body hydrodynamical simulations with varying PopIII stellar models to investigate the possibility of detecting first star signatures with observations of high-redshift damped Ly$alpha$ absorbers (DLAs). The simulations include atom ic and molecular cooling, star formation, energy feedback and metal spreading due to the evolution of stars with a range of masses and metallicities. Different initial mass functions (IMFs) and corresponding metal-dependent yields and lifetimes are adopted to model primordial stellar populations. The DLAs in the simulations are selected according to either the local gas temperature (temperature selected) or the host mass (mass selected). We find that 3% (40%) of mass (temperature) selected high-$z$ ($zge5.5$) DLAs retain signatures of pollution from PopIII stars, independently from the first star model. Such DLAs have low halo mass ($<10^{9.6},rm M_{odot}$), metallicity ($<10^{-3},rm Z_{odot}$) and star formation rate ($<10^{-1.5},rm M_{odot},yr^{-1}$). { Metal abundance ratios of DLAs imprinted in the spectra of QSO} can be useful tools to infer the properties of the polluting stellar generation and to constrain the first star mass ranges. Comparing the abundance ratios derived from our simulations to those observed in DLAs at $zge5$, we find that most of these DLAs are consistent within errors with PopII stars dominated enrichment and strongly disfavor the pollution pattern of very massive first stars (i.e. 100~$rm M_{odot}$-500~$rm M_{odot}$). However, some of them could still result from the pollution of first stars in the mass range [0.1, 100]~$rm M_{odot}$. In particular, we find that the abundance ratios from SDSS J1202+3235 are consistent with those expected from PopIII enrichment dominated by massive (but not extreme) first stars.
60 - A. Calamida , G. Bono 2007
We adopted uvby Stroemgren photometry to investigate the metallicity distribution of Omega Cen Red Giant (RG) stars. We provided a new empirical calibration of the Stroemgren m1 = (v-b)-(b-y) metallicity index based on cluster stars. The new calibrat ion has been applied to a sample of Omega Cen RGs. The shape of the estimated metallicity distribution is clearly asymmetric, with a sharp cut-off at low metallicities ([Fe/H] < -2.0) and a metal-rich tail up to [Fe/H] ~ 0.0. Two main metallicity peaks have been identified, around [Fe/H] ~ -1.9 and -1.3 dex, and a metal-rich shoulder at ~ 0.2 dex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا