ترغب بنشر مسار تعليمي؟ اضغط هنا

Brown dwarf populations in open clusters

101   0   0.0 ( 0 )
 نشر من قبل Klaus Schenker
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tim Adams




اسأل ChatGPT حول البحث

We present the results of multiple simulations of open clusters, modelling the dynamics of a population of brown dwarf members. We consider the effects of a large range of primordial binary populations, including the possibilities of having brown dwarf members contained within a binary system. We also examine the effects of various cluster diameters and masses. Our examination of a population of wide binary systems containing brown dwarfs, reveals evidence for exchange reactions whereby the brown dwarf is ejected from the system and replaced by a heavier main-sequence star. We find that there exists the possibility of hiding a large fraction of the brown dwarfs contained within the primordial binary population. We conclude that it is probable that the majority of brown dwarfs are contained within primordial binary systems which then hides a large proportion of them from detection.



قيم البحث

اقرأ أيضاً

232 - M. Fellhauer 2003
In Galactic open clusters, there is an apparent paucity of white dwarfs compared to the number expected assuming a reasonable initial mass function and that main-sequence stars with initial mass <= 8 M_sun become white dwarfs. We suggest that this la ck of white dwarfs is due at least in part to dynamical processes. Non-spherically symmetric mass loss during the post-main-sequence evolution would lead to a few km/s isotropic recoil speed for the white dwarf remnant. This recoil speed can cause a substantial fraction of the white dwarfs formed in a cluster to leave the system. We investigate this dynamical process by carrying out high-precision N-body simulations of intermediate-mass open clusters, where we apply an isotropic recoil speed to the white dwarf remnants. Our models suggest that almost all white dwarfs would be lost from the cluster if the average recoil speed exceeds twice the velocity dispersion of the cluster.
Blue straggler stars (BSS) are well studied in globular clusters but their systematic study with secure membership determination is lacking in open clusters. We use Gaia DR2 data to determine accurate stellar membership for four intermediate-age open clusters, Melotte 66, NGC 2158, NGC 2506 and NGC 6819, and three old open clusters, Berkeley 39, NGC 188 and NGC 6791, to subsequently study their BSS populations. The BSS radial distributions of five clusters, Melotte 66, NGC 188, NGC 2158, NGC 2506, and NGC 6791, show bimodal distributions, placing them with Family II globular clusters which are of intermediate dynamical ages. The location of minima, $r_mathrm{{min}}$, in the bimodal BSS radial distributions, varies from 1.5$r_c$ to 4.0$r_c$, where $r_c$ is the core radius of the clusters. We find a positive correlation between $r_mathrm{{min}}$ and $N_{mathrm{relax}}$, the ratio of cluster age to the current central relaxation time of the cluster. We further report that this correlation is consistent in its slope, within the errors, to the slope of the globular cluster correlation between the same quantities, but with a slightly higher intercept. This is the first example in open clusters that shows BSS radial distributions as efficient probes of dynamical age. The BSS radial distributions of the remaining two clusters, Berkeley 39 and NGC 6819, are flat. The estimated $N_{mathrm{relax}}$ values of these two clusters, however, indicate that they are dynamically evolved. Berkeley 39 especially has its entire BSS population completely segregated to the inner regions of the cluster.
181 - Emeline Bolmont 2017
The very recent discovery of planets orbiting very low mass stars sheds light on these exotic objects. Planetary systems around low-mass stars and brown dwarfs are very different from our solar system: the planets are expected to be much closer than Mercury, in a layout that could resemble the system of Jupiter and its moons. The recent discoveries point in that direction with, for example, the system of Kepler-42 and especially the system of TRAPPIST-1 which has seven planets in a configuration very close to the moons of Jupiter. Low-mass stars and brown dwarfs are thought to be very common in our neighborhood and are thought to host many planetary systems. The planets orbiting in the habitable zone of brown dwarfs (and very low-mass stars) represent one of the next challenges of the following decades: they are the only planets of the habitable zone whose atmosphere we will be able to probe (e.g. with the JWST).
79 - H. Bouy , E. Moraux , J. Bouvier 2005
We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample consists of 15 bona -fide brown dwarfs. We confirm 2 binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4AU and 1700AU and masses in the range 0.035--0.065~Msun. Together with the results of our previous study (Martin et al., 2003), we can derive a visual binary frequency of 13.3$^{+13.7}_{-4.3}$% for separations greater than 7~AU masses between 0.055--0.065~M$_{sun}$ and mass ratios between 0.45--0.9$<q<$1.0. The other observed properties of Pleiades brown dwarf binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.
104 - N. Skrzypek , S.J. Warren 2013
We have developed a method photo-type to identify and accurately classify L and T dwarfs, onto the standard system, from photometry alone. We combine SDSS, UKIDSS and WISE data and classify point sources by comparing the izYJHKW1W2 colours against te mplate colours for quasars, stars, and brown dwarfs. In a sample of $6.5times10^6$ bright point sources, J$<$17.5, from 3150 deg$^2$, we identify and type 898 L and T dwarfs, making this the largest homogeneously selected sample of brown dwarfs to date. The sample includes 713 (125) new (previously known) L dwarfs and 21 (39) T dwarfs. For the previously-known sources, the scatter in the plot of photo-type vs spectral type indicates that our photo-types are accurate to 1.5 (1.0) sub-types rms for L (T) dwarfs. Peculiar objects and candidate unresolved binaries are identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا