ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical/Infrared spectroscopy and photometry of the short period binary RX J1914+24

80   0   0.0 ( 0 )
 نشر من قبل Gavin Ramsay
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ramsay




اسأل ChatGPT حول البحث

We present observations of the proposed double degenerate polar RX J1914+24. Our optical and infrared spectra show no emission lines. This, coupled with the lack of significant levels of polarisation provide difficulties for a double degenerate polar interpretation. Although we still regard the double degenerate polar model as feasible, we have explored alternative scenarios for RX~J1914+24. These include a double degenerate algol system, a neutron star-white dwarf pair and an electrically powered system. The latter model is particularly attractive since it naturally accounts for the lack of both emission lines and detectable polarisation in RX J1914+24. The observed X-ray luminosity is consistent with the predicted power output. If true, then RX J1914+24 would be the first known stellar binary system radiating largely by electrical energy.

قيم البحث

اقرأ أيضاً

54 - Gavin Ramsay 2004
We present XMM-Newton observations of the 569 sec period system RX J1914+24 (V407 Vul). This period is believed to represent the binary orbital period making it an ultra-compact binary system. By comparing the phase of the rise to maximum X-ray flux at various epochs (this includes observations made using ROSAT, ASCA and Chandra) we find that the system is spinning up at a rate of 3.17+/-0.07x10^{-12} s/s. We find that the spectra softens as the X-ray flux declines towards the off-phase of the 569 sec period. Further, the spectra are best fitted by an absorbed blackbody component together with a broad emission feature around 0.59keV. This emission feature is most prominent at the peak of the on-phase. We speculate on its origin.
The nature of the X-ray source RX J1914+24 has been the subject of much debate. It shows a prominent period of 569 sec in X-rays and the optical/infra-red: in most models this has been interpreted as the binary orbital period. We present our analysis of new XMM-Newton and Chandra data. We find a longer term trend in the XMM-Newton data and power at 556 and 585 sec in 5 sets of data. It is not clear if they are produced as a result of a beat between a longer intrinsic period and the 569 sec modulation or if they are due to secular variations. We obtain a good fit to the XMM-Newton spectrum with a low temperature thermal plasma model with an edge at 0.83keV. This model implies an unabsorbed bolometric X-ray luminosity of 1x10^{33} ergs/s (for a distance of 1kpc) - this is 2 orders of magnitude lower than our previous estimate (derived using a different model). If the distance is much less, as the absorption derived from the X-ray fits suggest, then it is even lower at ~3x10^{31} ergs/s.
81 - Gavin Ramsay 1999
We have detected the optical counterpart of the proposed double degenerate polar RX J1914+24. The I band light curve is modulated on the 9.5 min period seen in X-rays. There is no evidence for any other periods. No significant modulation is seen in J . The infrared colours of RX J1914+24 are not consistent with a main sequence dwarf secondary star. Our ASCA spectrum of RX J1914+24 is typical of a heavily absorbed polar and our ASCA light curve also shows only the 9.5 min period. We find that the folded I band and X-ray light curves are out of phase. We attribute the I band flux to the irradiated face of the donor star. The long term X-ray light curve shows a variation in the observed flux of up to an order of magnitude. These observations strengthen the view that RX J1914+24 is indeed the first double degenerate polar to be detected. In this light, we discuss the synchronising mechanisms in such a close binary and other system parameters.
On 2017 March 11, the DLT40 Transient Discovery Survey discovered SN 2017cbv in NGC5643, a Type 2 Seyfert Galaxy in the Lupus Constellation. SN 2017cbv went on to become a bright Type Ia supernova, with a $V_{max}$ of 11.51 $pm$ 0.05 mag. We present early time optical and infrared photometry of SN 2017cbv covering the rise and fall of over 68 days. We find that SN 2017cbv has a broad light curve $Delta m_{15}(B)$ = 0.88 $pm$ 0.07, a $B$-band maximum at 2457840.97 $pm$ 0.43, a negligible host galaxy reddening where $E(B-V)_{host}$ $approx$ 0, and a distance modulus of 30.49 $pm$ 0.32 to the SN, corresponding to a distance of $12.58_{-1.71}^{+1.98}$ Mpc. We also present the results of two different numerical models we used for analysis in this paper: SALT2, an empirical model for Type Ia supernova optical light curves that accounts for variability components; and SNooPy, the CSP-II light-curve model that covers both optical and near-infrared wavelengths and is used for distance estimates.
Contact binary systems (also known as W UMa systems) consist of a pair of hydrogen-burning dwarf stars orbiting each other so closely that they share a common envelope. Although they are relatively common, there is as yet no established consensus on the principle evolutionary questions surrounding them: how do they form, how do they evolve over time, what do they become? One observational clue to their evolutionary history has been the abrupt termination of the orbital period distribution around 5.2 hours. We have undertaken an observational study of this by 1) discovery of fast W UMa systems in our Calvin-Rehoboth Observatory data archive, 2) follow-up with the Calvin-Rehoboth Observatory of candidate fast systems from the Catalina Sky Survey, and 3) follow-up of other reports of potentially fast systems in other recently published surveys. We find the follow-up to have been particularly important as many surveys taken for other purposes lead to ambiguous or incorrect claims for periods less than five hours. Our results to date may be characterized as showing two distinct components: the steeply decaying tail associated with the previously known cutoff along with a low-amplitude, but apparently uniform distribution that extends down to 3.6 hours. The confirmation at greater sensitivity of the abruptness of the cutoff seems to imply that the dominant mechanism for system formation (or the mechanism that determines system lifetime) does have a strong period dependence. At the same time, there appears to be a second mechanism at work as well which leads to the formation of the ultrafast component of the histogram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا