ﻻ يوجد ملخص باللغة العربية
We present the first detection of weak gravitational shear at infrared wavelengths, using observations of the lensing cluster Abell 1689, taken with the SofI camera on the ESO-NTT telescope. The imprint of cluster lenses on the shapes of the background galaxy population has previously been harnessed at optical wavelengths, and this gravitational shear signal enables cluster mass distributions to be probed, independent of whether the matter is luminous or dark. At near-infrared wavelengths, the spectrophotometric properties of galaxies facilitate a clean selection of background objects for use in the lensing analysis. A finite-field mass reconstruction and application of the aperture mass (Map) statistic are presented. The probability that the peak of the Map detection S/N~5, arises from a chance alignment of background sources is only ~4.5*10^-7. The velocity dispersion of the best-fit singular isothermal sphere model for the cluster is sigma_1D=1030^{+70}_{-80} km/s, and we find a K-band mass-to-light ratio of ~40 M_solar/L_solar inside a 0.44 Mpc radius.
We present the first application of lens magnification to measure the absolute mass of a galaxy cluster; Abell 1689. The absolute mass of a galaxy cluster can be measured by the gravitational lens magnification of a background galaxy population by th
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 (z=0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4
We have measured the strength of the UV upturn for red sequence galaxies in the Abell~1689 cluster at $z=0.18$, reaching to or below the $L^*$ level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV up
We present the results of infrared observations of Abell 1689 which was observed with ISOCAM, at 6.7mic and 15mic, and ISOPHOT at 200mic. The cluster galaxies detected above a sensitivity limit of 0.15 mJy in the 6.7mic band, whose emission is mostly
We present two weak lensing reconstructions of the nearby ($z_{cl}=0.055$) merging cluster Abell 3667, based on observations taken $sim 1$ year apart under different seeing conditions. This is the lowest redshift cluster with a weak lensing mass reco