ﻻ يوجد ملخص باللغة العربية
We present near-infrared spectroscopy of low-mass companions in a nearby triple system HD 130948 (Gliese 564, HR 5534). Adaptive optics on the Subaru Telescope allowed spectroscopy of the individual components of the 0.13 binary system. Based on a direct comparison with a series of template spectra, we determined the spectral types of HD 130948B and C to be L4 +- 1. If we take the young age of the primary star into account (0.3-0.8 Gyr), HD 130948B and C most likely are a binary brown dwarf system.
The potential of combining Adaptive Optics (AO) and Lucky Imaging (LI) to achieve high precision astrometry and differential photometry in the optical is investigated by conducting observations of the close 0farcs1 brown dwarf binary GJ569Bab. We too
We present K-band $lambda/Deltalambda$ ~ 2600 spectroscopy of five stars (K ~ 14 - 16 mag) within 0.5 of Sgr A*, the radio source associated with the compact massive object suspected to be a 2.6 x 10$^{6}$ msun black hole at the center of our Galaxy.
We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system
The current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are abou
<Context>. We report on near-infrared (IR) observations of the three anomalous X-ray pulsars XTE J1810-197, 1RXS J1708-4009, 1E 1841-045 and the soft gamma-ray repeater SGR 1900+14, taken with the ESO-VLT, the Gemini, and the CFHT telescopes. <Aims>.