ﻻ يوجد ملخص باللغة العربية
We find line emission from the hydrogen- and/or helium-like ions of Ne, O, N and C in the low and short-on states of Her X-1, using the XMM-Newton Reflection Grating Spectrometer. The emission line velocity broadening is 200 < sigma < 500 km/s. Plasma diagnostics with the Ne IX, O VII and N VI He-alpha lines and the radiative recombination continua of O VII and N VII, indicate the gas is heated by photoionization. We use spectral models to measure the element abundance ratios N/O, C/O, and Ne/O, which quantify CNO processing in HZ Her. Photoexcitation and high-density effects are not differentiated by the measured He-alpha lines. We set limits on the location, temperature and density of the line emission region. The narrow emission lines can be attributed to reprocessing in either an accretion disk atmosphere and corona or on the X-ray illuminated face of HZ Her. In the main-on state, the bright continuum only allows the detection of interstellar absorption, plus O VII He-alpha emission lines with sigma = 3200 +- 700 km/s and complex profiles. Other broad lines may be present. The broad lines may originate in a region near the pulsar magnetosphere. Fe L lines are not detected.
The UV emission lines of Hercules X-1, resolved with the HST GHRS and STIS, can be divided into broad (FWHM 750 km/s) and narrow (FWHM 150 km/s) components. The broad lines can be unambiguously identified with emission from an accretion disk which ro
We report new spectral modeling of the accreting X-ray pulsar Hercules X- 1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker & Wolff on Comptonized accretion flows onto magnetic neutron stars. We obta
We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ~4 Msec of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of
We present disk wind model calculations for the broad emission lines seen in the ultraviolet spectra of the X-ray binary Hercules X-1. Recent HST/STIS observations of these lines suggest that they are kinematically linked to the orbital motion of the
The cyclotron line in the spectrum of the accretion-powered pulsar Her X-1 offers an opportunity to assess the ability of the BATSE Spectroscopy Detectors (SDs) to detect lines like those seen in some GRBs. Preliminary analysis of an initial SD pulsa