ترغب بنشر مسار تعليمي؟ اضغط هنا

Submillimeter Evidence for the Coeval Growth of Massive Black Holes and Galaxy Bulges

327   0   0.0 ( 0 )
 نشر من قبل Mathew James Page
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.J.Page




اسأل ChatGPT حول البحث

The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x--ray absorbed active galactic nuclei which have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 microns, with flux densities between 5.9 and 10.1 milliJanskies, and hence are ultraluminous infrared galaxies. Interpreting the submillimeter flux as emission from dust heated by starbursts, these results suggest that the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion, accounting for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio quiet active galactic nuclei, similar to that seen in radio galaxies.



قيم البحث

اقرأ أيضاً

89 - D. A. Rafferty 2006
Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows t hat exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.
144 - S. Murray 2009
We discuss the central role played by X-ray studies to reconstruct the past history of formation and evolution of supermassive Black Holes (BHs), and the role they played in shaping the properties of their host galaxies. We shortly review the progres s in this field contributed by the current X-ray and multiwavelength surveys. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM, as for X-ray observations, and the legacy of the SDSS, as for wide area surveys: 1) When and how did the first supermassive black holes form? 2) How does cosmic environment regulate nuclear activity (and star formation) across cosmic time? 3) What is the history of nuclear activity in a galaxy lifetime? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. Such a survey can only be carried out with a Wide-Field X-ray Telescope (WFXT) with a high survey speed, due to the combination of large field of view and large effective area, i.e., grasp, and sharp PSF. We emphasize the important synergies that WFXT will have with a number of future groundbased and space telescopes, covering from the radio to the X-ray bands and discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
100 - J. M. Wang 2007
Episodic activity of quasars is driving growth of supermassive black holes (SMBHs) via accretion of baryon gas. In this Letter, we develop a simple method to analyse the duty cycle of quasars up to redshift $zsim 6$ universe from luminosity functions (LFs). We find that the duty cycle below redshift $zsim 2$ follows the cosmic history of star formation rate (SFR) density. Beyond $zsim 2$, the evolutionary trends of the duty cycle are just opposite to that of the cosmic SFR density history, implying the role of feedback from black hole activity. With the duty cycle, we get the net lifetime of quasars ($zle 5$) about $sim 10^9$yrs. Based on the local SMBHs, the mean mass of SMBHs is obtained at any redshifts and their seeds are of $10^5sunm$ at the reionization epoch ($z_{rm re}$) of the universe through the conservation of the black hole number density in comoving frame. We find that primordial black holes ($sim 10^3sunm$) are able to grow up to the seeds via a moderate super-Eddington accretion of $sim 30$ times of the critical rate from $z=24$ to $z_{rm re}$. Highly super-Eddington accretion onto the primordials is not necessary.
We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel and LABOCA we fit the rest-frame 5 -300 um emission using a two component, starburst and active galactic nucleus (AGN), model. The total infrared (8 - 1000 um) luminosity of this galaxy is (1.97+/-0.28)x10^13 Lsun with (1.17+/-0.27) and (0.79+/-0.09)x10^13 Lsun due to the AGN and starburst components respectively. The high derived AGN accretion rate of sim20% Eddington, and the measured star formation rate (SFR) of 1390pm150 Msun/yr, suggest that this massive system is in a special phase of rapid central black hole and host galaxy growth, likely caused by a gas rich merger in a dense environment. The accretion rate is sufficient to power both the jets and the previously observed large outflow. The high SFR and strong outflow suggest this galaxy could potentially exhaust its fuel for stellar growth in a few tens of Myr, although the likely merger of the radio galaxy with nearby satellites suggest bursts of star formation may recur again on time scales of several hundreds of Myr. The age of the radio lobes implies the jet started after the current burst of star formation, and therefore we are possibly witnessing the transition from a merger-induced starburst phase to a radio-loud AGN phase. We also note tentative evidence for [CII]158um emission. This paper marks the first results from the Herschel Galaxy Evolution Project (Project HeRGE), a systematic study of the evolutionary state of 71 high redshift, 1 < z < 5.2, radio galaxies.
158 - Reinhard Genzel 2014
The article summarizes the observational evidence for the existence of massive black holes, as well as the current knowledge about their abundance, their mass and spin distributions, and their cosmic evolution within and together with their galactic hosts. We finish with a discussion of how massive black holes may in the future serve as laboratories for testing the theory of gravitation in the extreme curvature regimes near the event horizon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا