ترغب بنشر مسار تعليمي؟ اضغط هنا

State transitions in LMC X-3

74   0   0.0 ( 0 )
 نشر من قبل Roberto Soria
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out a multiwavelenght study of the black-hole candidate LMC X-3 with XMM-Newton. The system showed a transition to a low-hard state, in which the X-ray spectrum was well fitted by a simple power law. It then returned to a high-soft state, characterised by a strong disk-blackbody component. The line-of-sight absorption column density is <~ 4 x 10^{20} cm^{-2} consistent with the foreground Galactic absorption. This rules out wind accretion. We argue that, despite LMC X-3 being a high-mass X-ray binary, Roche-lobe overflow is the main mechanism of mass transfer. From UV/optical observations in the low-hard state, we determine that the companion is a slightly evolved B5 star with a mass M ~ 4.5 M_sun. This is indeed consistent with the secondary star being close to filling its Roche lobe.

قيم البحث

اقرأ أيضاً

54 - J. Wilms 2000
We present the analysis of an RXTE monitoring campaign of the canonical soft state black hole candidates LMC X-1 and LMC X-3. In contrast to LMC X-1, which does not exhibit any periodic spectral changes, we find that LMC X-3 exhibits stron spectral v ariability on time scales of days to weeks. For typical RXTE ASM count rates, the luminosity variations of LMC X-3 are due to changes of the phenomenological disk blackbody temperature. During episodes of especially low luminosity (ASM count rates < 0.6 counts/sec), kT strongly decreases and the power law significantly hardens to a photon index of ~1.8. These changes are consistent with state changes of LMC X-3 from the soft state to the canonical hard state of galactic black hole candidates. We argue that the long term variability of LMC X-3 might be due to a wind-driven limit cycle such as discussed by Shields et al. (1986)
97 - J. Wilms 1998
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma is about 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its ~200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
We report the discovery of hysteresis between the x-ray spectrum and luminosity of black-hole binary LMC X-3. Our observations, with the Proportional Counter Array on the Rossi X-ray Timing Explorer, took place entirely within the soft spectral state , dominated by a spectral component that was fitted well with a multicolor disk blackbody. A power-law component was seen only during times when the luminosity of the disk blackbody was declining. The x-ray luminosity at these times was comparable to that seen in transient systems (x-ray novae) when they return to the hard state at the end of an outburst. Our observations may represent partial transitions to the hard state; complete transitions have been seen in this system by Wilms et al. (2001). If they are related to the soft-to-hard transition in transients, then they demonstrate that hysteresis effects can appear without a full state transition. We discuss these observations in the context of earlier observations of hysteresis within the hard state of binaries 1E 1740.7-2942 and GRS 1758-258 and in relation to published explanations of hysteresis in transients.
61 - M. A. Nowak 2000
We present results from 170ksec long RXTE observations of LMC X-1 and LMC X-3, taken in 1996 December, where their spectra can be described by a disc black body plus an additional soft (Gamma~2.8) high-energy power-law (detected up to 50keV in LMC X- 3). These observations, as well as archival ASCA observations, constrain any narrow Fe line present in the spectra to have an equivalent width <90eV, broad lines (~150eV EW, sigma ~ 1keV) are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately f^{-1} between 10^{-3} and 0.3Hz with a rms variability of ~7%. Above 5keV the PSD shows evidence of a break at f > 0.2Hz, possibly indicating an outer disc radius of ~1000GM/c^2 in this likely wind-fed system. Furthermore, the coherence function between variability in the > 5keV band and variablity in the lower energy bands is extremely low. We discuss the implications of these observations for the mechanisms.
This paper reports the results of Suzaku observation of the spectral variation of the black hole binary LMCX-1 in the soft state. The observationwas carried out in 2009 from July 21 to 24. the obtained net count rate was $sim$30 counts s$^{-1}$ in th e 0.5--50 keV band with $sim$10% peak-to-peak flux variation. The time-averaged X-ray spectrum cannot be described by a multi-color disk and single Compton component with its reflection, but requires additional Comptonized emissions. This double Compton component model allows a slightly larger inner radius of the multi-color disk, implying a lower spin parameter. Significant spectral evolution was observed above 8 keV along with a flux decrease on a timescale of $sim$10$^4$--10$^5$ s. By spectral fitting, we show that this behavior is well explained by changes in the hard Comptonized emission component in contrast to the maintained disk and soft Comptonized emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا