ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton EPIC observations of Her X-1

71   0   0.0 ( 0 )
 نشر من قبل Gavin Ramsay
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ramsay




اسأل ChatGPT حول البحث

We present spin-resolved X-ray data of the neutron star binary Her X-1. We find evidence that the Iron line at 6.4 keV originates from the same location as the blackbody X-ray component. The line width and energy varies over both the spin period and the 35 day precession period. We also find that the correlation between the soft and hard X-ray light curves varies over the 35 day period.

قيم البحث

اقرأ أيضاً

We present the results of two XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5204 X-1. The EPIC spectra are well-fit by the standard spectral model of a black-hole X-ray binary, comprising a soft multi-colour disc blackbody compo nent plus a harder power-law continuum. The cool (kT_in ~ 0.2 keV) inner-disc temperature required by this model favours the presence of an intermediate-mass black hole (IMBH) in this system, though we highlight a possible anomaly in the slope of the power-law continuum in such fits. We discuss the interpretation of this and other, non-standard spectral modelling of the data.
76 - S. Zane 2005
We present the results of a series of XMM-Newton EPIC and OM observations of Her X-1, spread over a wide range of the 35 d precession period. We confirm that the spin modulation of the neutron star is weak or absent in the low state - in marked contr ast to the main or short-on states. The strong fluorescence emission line at ~6.4 keV is detected in all observations (apart from one taken in the middle of eclipse), with higher line energy, width and normalisation during the main-on state. In addition, we report the detection of a second line near 7 keV in 10 of the 15 observations taken during the low-intensity states of the system. We discuss these observations in the context of previous observations, investigate the origin of the soft and hard X-rays and consider the emission site of the 6.4keV and 7keV emission lines.
We report the results of preliminary analysis of the XMM_Newton EPIC and RGS observations of the candidate black-hole binary LMC X-3 between February and June 2000. The observations covered both the soft and the hard X-ray spectral states. The hard-s tate spectra were dominated by a power-law component with a photon index Gamma = 1.9 +/- 0.1. The soft-state spectra consisted of a thermal component with a multi-colour disk temperature T_in = 0.9 keV and a power-law tail with Gamma ~ 2.5--2.7. The model in which the X-rays from LMC X-3 in the high-soft state are powered by a strong stellar wind from a massive companion is not supported by the small line-of-sight absorption (n_H <~ 10^{21} cm^{-2}) deduced from the RGS data. The transition from the soft to the hard state appears to be a continuous process associated with the changes in the mass-transfer rate.
We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected i n all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 d period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a co-rotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.
67 - J. Nevalainen 2005
We use XMM-Newton blank-sky and closed-cover background data to explore the background subtraction methods for large extended sources filling the EPIC field of view, such as nearby galaxy clusters, for which local background estimation is difficult. We find that to keep the 0.8-7.0 keV band background modeling uncertainty tolerable, one has to use a much more restrictive filter than that commonly applied. In particular, because flares have highly variable spectra, not all of them are identified by filtering the E>10 keV light curve. We tried using the outer part of the EPIC FOV for monitoring the background in a softer band (1-5 keV). We find that one needs to discard the time periods when either the hard-band or the soft-band rate exceeds the nominal value by more than 20% in order to limit the 90% CL background uncertainty to between 5% at E=4-7 keV and 20% at E=0.8-1 keV, for both MOS and PN. This compares to a 10-30% respective PN uncertainty when only the hard-band light curve is used for filtering, and to a 15-45% PN uncertainty when applying the commonly used 2-3 sigma filtering method. We illustrate our method on a nearby cluster A1795. The above background uncertainties convert into the systematic temperature uncertainties between 1% at r=3-4 arcmin and 20--25% (~1 keV for A1795) at r=10-15 arcmin. For comparison, the commonly applied 2-3 sigma clipping of the hard-band light curve misses a significant amount of flares, rendering the temperatures beyond r=10 arcmin unconstrained. Thus, the background uncertainties do not prohibit the EPIC temperature profile analysis of low-brightness regions, like outer regions of galaxy clusters, provided a conservative flare filtering such as the double filtering method with 20% limits is used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا