ترغب بنشر مسار تعليمي؟ اضغط هنا

The gradient of diffuse gamma-ray emission in the Galaxy

46   0   0.0 ( 0 )
 نشر من قبل Dieter Breitschwerdt
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the well-known discrepancy between the radial dependence of the Galactic cosmic ray (CR) nucleon distribution, as inferred most recently from EGRET observations of diffuse gamma-rays above 100 MeV, and of the most likely CR source distribution (supernova remnants, pulsars) can be explained purely by PROPAGATION effects. Contrary to previous claims, we demonstrate that this is possible, if the dynamical coupling between the escaping CRs and thermal plasma is taken into account, and thus a self-consistent GALACTIC WIND calculation is carried out. Given a dependence of the CR source distribution on Galactocentric radius, r, our numerical wind solutions show that the CR outflow velocity, V(r,z) depends both on r, and on vertical distance, z, at reference level z_C. The latter is defined as the transition boundary from diffusion to advection dominated CR transport and is therefore also a function of r. In fact, the CR escape time averaged over particle energies decreases with increasing CR source strength. Such an increase is counteracted by a reduced average CR residence time in the gas disk. Therfore pronounced peaks in the radial source distribution result in mild radial gamma-ray gradients at GeV energies, as it has been observed. This effect is enhanced by anisotropic diffusion, assuming different radial and vertical diffusion coefficients. We have calculated 2D analytic solutions of the stationary diffusion-advection equation, including anisotropic diffusion, for a given CR source distribution and a realistic outflow velocity field V(r,z), inferred from self-consistent numerical Galactic Wind simulations. At TeV energies the gamma-rays from the sources are expected to dominate the observed diffuse flux from the disk. Its observation should allow an empirical test of the theory presented.

قيم البحث

اقرأ أيضاً

We have performed the first measurement of the angular power spectrum in the large-scale diffuse emission at energies from 1-50 GeV. We compared results from data and a simulated model in order to identify significant differences in anisotropy proper ties. We found angular power above the photon noise level in the data at multipoles greater than ~ 100 for energies 1< E <10 GeV. The excess power in the data suggests a contribution from a point source population not present in the model.
Recently the Milagro experiment observed diffuse multi-TeV gamma-ray emission in the Cygnus region, which is significantly stronger than what predicted by the Galactic cosmic ray model. However, the sub-GeV observation by EGRET shows no excess to the prediction based on the same model. This TeV excess implies possible high energy cosmic rays populated in the region with harder spectrum than that observed on the Earth. In the work we studied this theoretical speculation in detail. We find that, a diffuse proton source with power index $alpha_plesssim 2.3$, or a diffuse electron source with power index $alpha_elesssim2.6$ can reproduce the Milagros observation without conflicting with the EGRET data. Further detections on neutrinos, a diagnostic of the hadronic model, and hard X-ray synchrontron radiation, a diagnostic of the lepton model, help to break this degeneracy. In combination with the gamma ray observations to several hundred GeV by Fermi, we will be able to understand the diffuse emission mechanisms in the Cygnus region better.
257 - C.Itoh , R.Enomoto , S.Yanagita 2006
The CANGAROO-II telescope observed sub-TeV gamma-ray emission from the nearby starburst galaxy NGC 253. The emission region was extended with a radial size of 0.3-0.6 degree. On the contrary, H.E.S.S could not confirm this emission and gave upper lim its at the level of the CANGAROO-II flux. In order to resolve this discrepancy, we analyzed new observational results for NGC 253 by CANGAROO-III and also assessed the results by CANGAROO-II. Observation was made with three telescopes of the CANGAROO-III in October 2004. We analyzed three-fold coincidence data by the robust Fisher Discriminant method to discriminate gamma ray events from hadron events. The result by the CANGAROO-III was negative. The upper limit of gamma ray flux was 5.8% Crab at 0.58 TeV for point-source assumption. In addition, the significance of the excess flux of gamma-rays by the CANGAROO-II was lowered to less than 4 sigma after assessing treatment of malfunction of photomultiplier tubes.
288 - K. Egberts , F. Brun , S. Casanova 2013
Diffuse gamma-ray emission has long been established as the most prominent feature in the GeV sky. Although the imaging atmospheric Cherenkov technique has been successful in revealing a large population of discrete TeV gamma-ray sources, a thorough investigation of diffuse emission at TeV energies is still pending. Data from the Galactic Plane Survey (GPS) obtained by the High Energy Stereoscopic System (H.E.S.S.) have now achieved a sensitivity and coverage adequate for probing signatures of diffuse emission in the energy range of ~100 GeV to a few TeV. Gamma-rays are produced in cosmic-ray interactions with the interstellar medium (aka sea of cosmic rays) and in inverse Compton scattering on cosmic photon fields. This inevitably leads to guaranteed gamma-ray emission related to the gas content along the line-of-sight. Further contributions relate to those gamma-ray sources that fall below the current detection threshold and the aforementioned inverse Compton emission. Based on the H.E.S.S. GPS, we present the first observational assessment of diffuse TeV gamma-ray emission. The observation is compared with corresponding flux predictions based on the HI (LAB data) and CO (as a tracer of H2, NANTEN data) gas distributions. Consequences for unresolved source contributions and the anticipated level of inverse Compton emission are discussed.
Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anis otropy of the IDGRB measured on small scales by Fermi-LAT. We aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. We model the MSPs spatial distribution in the Galaxy and the gamma-ray emission parameters by considering radio and gamma-ray observational constraints. By simulating a large number of MSPs populations, we compute the average diffuse emission and the anisotropy 1-sigma upper limit. The emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10 degrees in latitude. The 1-sigma upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30 degrees. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude gamma-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes. Nevertheless, given the MSP distribution, we expect them to contribute significantly to the gamma-ray diffuse emission at low latitudes. Since, along the galactic disk, the population of young Pulsars overcomes in number the one of MSPs, we compute the gamma-ray emission from the whole population of unresolved Pulsars in two low-latitude regions: the inner Galaxy and the galactic center.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا