ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-IR Observations of Mass Loss in Elliptical Galaxies

81   0   0.0 ( 0 )
 نشر من قبل Alex Athey
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early-type galaxies exhibit thermal and molecular resonance emission from dust that is shed and heated through stellar mass loss as a subset of the population moves through the AGB phase of evolution. Because this emission can give direct insight into stellar evolution in addition to galactic stellar mass loss and ISM injection rates, we conducted a program to search for this signature emission with CAM on ISO. We obtained 6-15 micron imaging observations in six narrow bands for nine elliptical galaxies; every galaxy is detected in every band. For wavelengths shorter than 9 microns, the spectra are well matched by a blackbody, originating from the K and M stars that dominate the integrated light of elliptical galaxies. However, at wavelengths between 9 and 15 microns, the galaxies display excess emission relative to the stellar photospheric radiation. Additional data taken with the fine resolution circular variable filter on one source clearly shows broad emission from 9 to 15 microns, peaking around 10 microns. This result is consistent with the known, broad silicate feature at 9.7 microns, originating in the circumstellar envelopes of AGB stars. This emission is compared with studies of Galactic and LMC AGB stars to derive cumulative mass loss rates. In general, these mass loss rates agree with the expected ~0.8 solar masses per year value predicted by stellar evolutionary models. Both the photospheric and circumstellar envelope emission follow a de Vaucouleurs R^{1/4} law, supporting the conclusion that the mid-infrared excess emission originates in the stellar component of the galaxies and acts as a tracer of AGB mass loss and mass injection into the ISM.



قيم البحث

اقرأ أيضاً

I present integrated colors and surface brightness fluctuation magnitudes in the mid-IR, derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between $Z$= 0.0001 and $Z$ = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of extreme single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 um and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2-3 Gyr.
We present 75x75 size maps of M82 at 6.4 micron, 6.6 micron, 7.7 micron, 31.5 micron, and 37.1 micron with a resolution of ~4 that we have obtained with the mid-IR camera FORCAST on SOFIA. We find strong emission from the inner 60 (~1kpc) along the m ajor axis, with the main peak 5 west-southwest of the nucleus and a secondary peak 4 east-northeast of the nucleus. The detailed morphology of the emission differs among the bands, which is likely due to different dust components dominating the continuum emission at short mid-IR wavelengths and long mid-IR wavelengths. We include Spitzer-IRS and Herschel/PACS 70 micron data to fit spectral energy distribution templates at both emission peaks. The best fitting templates have extinctions of A_V = 18 and A_V = 9 toward the main and secondary emission peak and we estimated a color temperature of 68 K at both peaks from the 31 micron and 37 micron measurement. At the emission peaks the estimated dust masses are on the order of 10^{4} M_sun.
115 - D. Massa , D. Lennon 2010
We use a combination of VJHK and Spitzer} [3.6], [5.8] and [8.0] photometry, to determine IR excesses in a sample of LMC and SMC O stars. This sample is ideal for determining excesses because: 1) the distances to the stars, and hence their luminositi es, are well-determined, and; 2) the very small line of sight reddenings minimize the uncertainties introduced by extinction corrections. We find IR excesses much larger than expected from Vink et al. (2001) mass loss rates. This is in contrast to previous wind line analyses for many of the LMC stars which suggest mass loss rates much less than the Vink et al. predictions. ogether, these results indicate that the winds of the LMC and SMC O stars are strongly structured (clumped).
109 - D. Fadda 2000
We present the results of infrared observations of Abell 1689 which was observed with ISOCAM, at 6.7mic and 15mic, and ISOPHOT at 200mic. The cluster galaxies detected above a sensitivity limit of 0.15 mJy in the 6.7mic band, whose emission is mostly dominated by their stellar component, show optical colors similar to the overall cluster population and are gathered in the center of the cluster, following the distribution of the cluster early-types. In the 15mic band, above a sensitivity limit of 0.3 mJy, the galaxies spectroscopically confirmed to be cluster members are blue outliers of the cluster color-magnitude relation and become brighter going from the center to the outer parts of the cluster. We compare the 6.7mic and 15mic fluxes and the cumulative distributions of the B-[6.75] and B-[15] colors of the A1689 galaxies, above our 90% completeness limits of 0.2 and 0.4 mJy for 6.7mic and 15mic respectively, to the galaxies of two nearby clusters, Virgo and Coma, and to the field galaxies at the same redshift of the cluster. Although the B-[6.7] color distributions of the three clusters are compatible, we find a systematic excess of B-[15] color distribution for the galaxies located in Abell 1689 with respect to Coma or Virgo galaxies. This result proves the existence of a mid-infrared equivalent of the Butcher-Oemler effect measured in the optical. The comparison of 15mic flux and B-[15] color distributions of A1689 and field galaxies does not show strong differences between the population of starburst galaxies in the cluster and in the field.
89 - Ortwin Gerhard 1998
The mass and anisotropy of an elliptical galaxy can be simultaneously determined from velocity dispersion and line profile shape measurements. We describe the principles, techniques, and limitations of this approach, and the results obtained sofar. W e briefly discuss how best to combine these stellar-dynamical results with X-ray measurements and gravitational lensing analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا