ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mass Function of Field Galaxies at 0.4 < z < 1.2 Derived From the MUNICS K-Selected Sample

64   0   0.0 ( 0 )
 نشر من قبل Niv Drory
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Drory




اسأل ChatGPT حول البحث

We derive the number density evolution of massive field galaxies in the redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically calibrated photometric redshifts to determine distances and absolute magnitudes in the rest-frame K-band. To assign mass-to-light ratios, we use two different approaches. First, we use an approach which maximizes the stellar mass for any K-band luminosity at any redshift. We take the mass-to-light ratio of a Simple Stellar Population (SSP) which is as old as the universe at the galaxys redshift as a likely upper limit. Second, we assign each galaxy a mass-to-light ratio by fitting the galaxys colours against a grid of composite stellar population models and taking their M/L. We compute the number density of galaxies more massive than 2 x 10^10 h^-2 Msun, 5 x 10^10 h^-2 Msun, and 1 x 10^11 h^-2 Msun, finding that the integrated stellar mass function is roughly constant for the lowest mass limit and that it decreases with redshift by a factor of ~ 3 and by a factor of ~ 6 for the two higher mass limits, respectively. This finding is in qualitative agreement with models of hierarchical galaxy formation, which predict that the number density of ~ M* objects is fairly constant while it decreases faster for more massive systems over the redshift range our data probe.

قيم البحث

اقرأ أيضاً

60 - N. Drory 2001
We derive the number density evolution of massive field galaxies in the redshift range 0.4 < z < 1.2 using the K-band selected field galaxy sample from the Munich Near-IR Cluster Survey (MUNICS). We rely on spectroscopically calibrated photometric re dshifts to determine distances and absolute magnitudes in the rest-frame K-band. To assign mass-to-light ratios, we use an approach which maximizes the stellar mass for any K-band luminosity at any redshift. We take the mass-to-light ratio, M/L_K, of a Simple Stellar Population (SSP) which is as old as the universe at the galaxys redshift as a likely upper limit. This is the most extreme case of pure luminosity evolution and in a more realistic model M/L_K will probably decrease faster with redshift due to increased star formation. We compute the number density of galaxies more massive than 2 10^10 h^-2 solar masses, 5 10^10 h^-2 solar masses, and 1 10^11 h^-2 solar masses, finding that the integrated stellar mass function is roughly constant for the lowest mass limit and that it decreases with redshift by a factor of roughly 3 and by a factor of roughly 6 for the two higher mass limits, respectively. This finding is in qualitative agreement with models of hierarchical galaxy formation, which predict that the number density of ~ M* objects is fairly constant while it decreases faster for more massive systems over the redshift range our data probe.
366 - N. Drory 2004
We present a measurement of the evolution of the stellar mass function in four redshift bins at 0.4 < z < 1.2 using a sample of more than 5000 K-selected galaxies drawn from the MUNICS dataset. Our data cover the stellar mass range 10^10 < M/Msun < 1 0^12. We derive K-band mass-to-light ratios by fitting a grid of composite stellar population models of varying star formation history, age, and dust extinction to BVRIJK photometry. We discuss the evolution of the average mass-to-light ratio as a function of galaxy stellar mass in the K-band and in the B-band. We compare our stellar mass function at z > 0 to estimates obtained similarly at z=0. We find that the mass-to-light ratios in the K-band decline with redshift. This decline is similar for all stellar masses above $10^10 Msun. Lower mass galaxies have lower mass-to-light ratios at all redshifts. The stellar mass function evolves significantly to z = 1.2. The total normalization decreases by a factor of ~2, the characteristic mass (the knee) shifts towards lower masses and the bright end therefore steepens with redshift. The amount of number density evolution is a strong function of stellar mass, with more massive systems showing faster evolution than less massive systems. We discuss the total stellar mass density of the universe and compare our results to the values from the literature both at lower and higher redshift. We find that the stellar mass density at z~1 is roughly 50% of the local value. Our results imply that the mass assembly of galaxies continues well after $z sim 1$. Our data favor a scenario in which the growth of the most massive galaxies is dominated by accretion and merging rather than star formation which plays a larger role in the growth of less massive systems.
57 - N. Drory 2003
(Abriged) We present a measurement of the evolution of the rest-frame K-band luminosity function to z ~ 1.2 using a sample of more than 5000 K-selected galaxies drawn from the MUNICS dataset. Distances and absolute K-band magnitudes are derived using photometric redshifts from spectral energy distribution fits to BVRIJK photometry. These are calibrated using >500 spectroscopic redshifts. We obtain redshift estimates having a rms scatter of 0.055 and no mean bias. We use Monte-Carlo simulations to investigate the influence of the errors in distance associated with photometric redshifts on our ability to reconstruct the shape of the luminosity function. Finally, we construct the rest-frame K-band LF in four redshift bins spanning 0.4<z<1.2 and compare our results to the local luminosity function. We discuss and apply two different estimators to derive likely values for the evolution of the number density, Phi*, and characteristic luminosity, M*, with redshift. While the first estimator relies on the value of the luminosity function binned in magnitude and redshift, the second estimator uses the individually measured {M,z} pairs alone. In both cases we obtain a mild decrease in number density by ~ 25% to z=1 accompanied by brightening of the galaxy population by 0.5 to 0.7 mag. These results are fully consistent with an analogous analysis using only the spectroscopic MUNICS sample. The total K-band luminosity density is found to scale as dlog(rho_L)/dz = 0.24. We discuss possible sources of systematic errors and their influence on our parameter estimates.
We present the results of a study on the properties and evolution of massive (M_* > 10^11 M_0) galaxies at z~0.4 - 2 utilising Keck spectroscopy, near-Infrared Palomar imaging, and Hubble, Chandra, and Spitzer data covering fields targeted by the DEE P2 galaxy spectroscopic survey. Our sample is K band selected based on wide-area NIR imaging from the Palomar Observatory Wide-Field Infrared Survey, which covers 1.53 deg^2 to K_s,vega~20.5. Our major findings include: (i) statistically the mass and number densities of M_* > 10^11 M_0 galaxies show little evolution between z = 0 - 1, and from z ~ 0 - 2 for M_* > 10^11.5 M_0 galaxies. (ii) Using Hubble ACS imaging, we find that M_* > 10^11 selected galaxies show a nearly constant elliptical fraction of ~70-90% at all redshifts. The remaining objects are peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. (iii) We find that only a fraction (~60%) of massive galaxies with M_* > 10^11 M_0 are on the red-sequence at z~1.4, while nearly 100% evolve onto it by z~0.4. (iv) By utilising Spitzer MIPS imaging and [OII] line fluxes we argue that M_* > 10^11.5 galaxies have a steeply declining star formation rate density ~(1+z)^6. By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M_* >10^11 M_0 galaxies undergo on average 0.9^+0.7_-0.5 major mergers at 0.4 < z < 1.4. (v) A high (5%) fraction of all M_* > 10^11 M_0 galaxies are X-ray emitters. Roughly half of these are morphologically distorted ellipticals or peculiars. We compare our results with the Millennium simulation, finding that the number and mass densities of M_* > 10^11.5 M_0 galaxies are under predicted by a factor of > 100.
We discuss the host galaxy metallicity distribution of all long gamma-ray bursts (GRBs) whose redshifts are known to be $< 0.4$, including newly obtained spectroscopic datasets of the host galaxies of GRB 060614, 090417B, and 130427A. We compare the metallicity distribution of the low-redshift sample to the model predictions, and constrain the relation between metallicity and GRB occurrence. We take account of spatial variation of metallicities among star forming regions within a galaxy. We found that the models, in which only low-metallicity stars produce GRBs with a sharp cutoff of GRB production efficiency around 12+log(O/H) $sim$ 8.3, can well reproduce the observed distribution, while the models with no metallicity dependence are not consistent with the observations. We also discuss possible sampling biases we may suffer by collecting long GRBs whose redshifts are known, presenting the photometric observations of the host galaxy of GRB 111225A at $z = 0.297$ whose redshift has been undetermined until $sim$ 2.3 years after the burst.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا