ﻻ يوجد ملخص باللغة العربية
Using a near-IR stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the Ca II triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar populations models to provide accurate predictions for integrated Ca II strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted Ca II are compared with those of previous works in the field.
We present an homogeneous set of stellar atmospheric parameters (Teff, log g, [Fe/H]) for a sample of about 700 field and cluster stars which constitute a new stellar library in the near-infrared developed for stellar population synthesis in this spe
We present a new stellar population synthesis model, which predicts SEDs for single-age single-metallicity stellar populations, SSPs, at resolution 1.5A (FWHM) in the spectral region of the near-IR CaII triplet feature. The main ingredient of the mod
We present measurements of the near-infrared Calcium II triplet (CaT, CaT*), Paschen (PaT) and Magnesium (MgI) indices for a well-studied sample of 19 bulges of early to intermediate spiral galaxies. We find that both the CaT* and CaT indices decreas
(ABRIDGED) Context. The line strength of the Ca II triplet (CaT) lines are a proxy to measure metallicity from individual stellar spectra of bright red giant stars. It is a mandatory step to remove the magnitude (proxy for gravity, temperature and lu
We have obtained spectra with resolution 2.5 Angstroms in the region 7500-9500 Angstroms for 116 red giants in 5 Galactic globular clusters and 6 old open clusters (5 with published metallicities, and one previously unmeasured). The signal-to-noise r