ترغب بنشر مسار تعليمي؟ اضغط هنا

QSOs and Spheroidal Galaxies

193   0   0.0 ( 0 )
 نشر من قبل Gian Luigi Granato
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In view of the extensive evidence of tight inter-relationships between spheroidal galaxies (and galactic bulges) with massive black holes hosted at their centers, a consistent model must deal jointly with the evolution of the two components. We describe one such model, which successfully accounts for the local luminosity function of spheroidal galaxies, for their photometric and chemical properties, for deep galaxy counts in different wavebands, including those in the (sub)-mm region which proved to be critical for current semi-analytic models stemming from the standard hierarchical clustering picture, for clustering properties of SCUBA galaxies, of EROs, and of LBGs, as well as for the local mass function of massive black holes and for quasar evolution. Predictions that can be tested by surveys carried out by SIRTF are presented.

قيم البحث

اقرأ أيضاً

69 - C. N. Hao , X. Y. Xia , Shude Mao 2005
We study the properties of infrared-selected QSOs (IR QSOs), optically-selected QSOs (PG QSOs) and Narrow Line Seyfert 1 galaxies (NLS1s). We compare their properties from the infrared to the optical and examine various correlations among the black h ole mass, accretion rate, star formation rate and optical and infrared luminosities. We find that the infrared excess in IR QSOs is mostly in the far infrared, and their infrared spectral indices suggest that the excess emission is from low temperature dust heated by starbursts rather than AGNs. The infrared excess is therefore a useful criterion to separate the relative contributions of starbursts and AGNs. We further find a tight correlation between the star formation rate and the accretion rate of central AGNs for IR QSOs. The ratio of the star formation rate and the accretion rate is about several hundred for IR QSOs, but decreases with the central black hole mass. This shows that the tight correlation between the stellar mass and the central black hole mass is preserved in massive starbursts during violent mergers. We suggest that the higher Eddington ratios of NLS1s and IR QSOs imply that they are in the early stage of evolution toward classical Seyfert 1s and QSOs, respectively.
87 - P. North 2012
We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had a lready been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia.
483 - T.Treu 2003
We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamic s (LSD) Survey is gathering kinematic data for distant (up to $zsim1$) E/S0s that are gravitational lenses. A joint lensing and dynamical analysis constrains the fraction of dark matter within the Einstein radius, the mass-to-light ratio of the stellar component, and the total slope of the mass density profile. These properties and their evolution with redshift are briefly discussed in terms of the formation and evolution of E/S0 galaxies and measurement of the Hubble Constant from gravitational time delay systems. At the cluster scale -- after careful removal of the stellar component with a joint lensing and dynamical analysis -- systems with giant radial arcs can be used to measure precisely the inner slope of the dark matter halo. An HST search for radial arcs and the analysis of a first sample are briefly discussed in terms of the universal dark matter halos predicted by CDM simulations.
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
We detect angular galaxy-QSO cross-correlations between the APM Galaxy Catalogue and a preliminary release (consisting of roughly half of the anticipated final catalogue) of the Hamburg-ESO Catalogue of Bright QSOs as a function of source QSO redshif t using multiple cross-correlation estimators. Each of the estimators yield very similar results, implying that the APM catalogue and the Hamburg-ESO survey are both fair samples of the respective true galaxy and QSO populations. Though the signal matches the expectations of gravitational lensing qualitatively, the strength of the measured cross-correlation signal is significantly greater than the CDM models of lensing by large scale structure would suggest. This same disagreement between models and observation has been found in several earlier studies. We estimate our confidence in the correlation detections versus redshift by generating 1000 random realizations of the Hamburg-ESO QSO survey: We detect physical associations between galaxies and low-redshift QSOs at 99% confidence and detect lensing associations at roughly 95% confidence for QSOs with redshifts between 0.6 and 1. Control cross-correlations between Galactic stars and QSOs show no signal. Finally, the overdensities (underdensities) of galaxies near QSO positions relative to those lying roughly 135 - 150 arcmin away are uncorrelated with differences in Galactic extinction between the two regions, implying that Galactic dust is not significantly affecting the QSO sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا