ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Resolution of High-Velocity Filaments in the Narrow-Line Region of NGC 1068: Associated Absorbers Caught in Emission?

61   0   0.0 ( 0 )
 نشر من قبل Gerald Cecil
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the HST STIS spectrograph we have obtained a grid of [O III] and H-beta emission-line spectra at 005x019 and 60 km/s (FWHM) resolution that covers much of the NLR of NGC 1068. We find emitting knots that have blueshifted radial velocities up to 3200 km/s relative to galaxy systemic, are 70-150 pc NE of the nucleus and up to 40 pc from the radio jet, emit several percent of the NLR line flux but no significant continuum, span velocity extents of up to 1250 km/s but a small fraction of the sky seen from the nucleus, coincide with a region of enhanced IR coronal-line emission, and have ionized masses $sim$200 Msun/ne4 (ne4=10^4 cm^{-3}). We argue that the blueshifted knots are ablata from disintegrating molecular clouds that are being photoionized by the AGN, and are being accelerated readiatively by the AGN or mechanically by the radio jet. In their kinematic properties, the knots resemble the associated absorbers seen projected on the UV continua of some AGN. Between 25-45 from the nucleus, emission is redshifted relative to systemic, a pattern that we interpret as gas in the galaxy disk being pushed away from us by the NE radio lobe.



قيم البحث

اقرأ أيضاً

We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models consider the radiative force due to the active galactic nucleus (AGN), gravitational forces from the supermassive black hole (SMBH), nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR clouds interacting with a hot ambient medium. The derived velocity profile of the NLR gas is compared to that obtained from our previous kinematic models of the NLR using a simple biconical geometry for the outflowing NLR clouds. The results show that the acceleration profile due to radiative line driving is too steep to fit the data and that gravitational forces along cannot slow the clouds down, but with drag forces included, the clouds can slow down to the systemic velocity over the range 100--400 pc, as observed. However, we are not able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc, indicating the need for additional dynamical studies.
102 - James T. Radomski 2002
We present subarcsecond resolution mid infrared images of NGC 4151 at 10.8 micron and 18.2 micron. These images were taken with the University of Florida mid-IR camera/spectrometer OSCIR at the Gemini North 8-m telescope. We resolve emission at both 10.8 micron and 18.2 micron extending ~ 3.5 across at a P.A. of ~ 60 degrees. This coincides with the the narrow line region of NGC 4151 as observed in [OIII] by the Hubble Space Telescope. The most likely explanation for this extended mid-IR emission is dust in the narrow line region heated by a central engine. We find no extended emission associated with the proposed torus and place an upper limit on its mid-IR size of less than or equal to ~ 35 pc.
Narrow-band imaging of the nuclear region of NGC 4151 with the Hubble Space Telescope is presented. The filter bandpasses isolate line emission in various high velocity ranges in several ions. Slitless and long-slit spectra of the region with the Spa ce Telescope Imaging Spectrograph also indicate the locations of high velocity gas. These emission regions are faint and are interspersed among the bright emission clouds seen in direct images. They have radial velocities up to 1400 km/s relative to the nucleus, and are found in both approach and recession on both sides of the nucleus. This contrasts strongly with the bright emission line clouds which have been discussed previously as showing bidirectional outflow with velocities within 400 km/s of the nucleus. We discuss the possible connections of the high velocity material with the radio jet and the nuclear radiation.
122 - E. Congiu 2017
We studied the properties of the gas of the extended narrow line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high resolution spectra to investigate how the main properties of this region depend on the gas velocity. We d ivided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and SUMA composite models (photo-ionization + shocks), show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photo-ionization from the active nucleus remains the main ionization mechanism. In IC 5063 the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disk. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the ISM and high velocity components, such as jets.
We present a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The spectra were retrieved from the Multimissio n Archive at Space Telescope (MAST) obtained from two visits and seven orbits of HST time. We also obtained MERLIN radio maps of the center of NGC 1068 to examine the dependence of the NLR cloud velocities on the radio structure. The radial velocities and velocity dispersions of the bright NLR clouds appear to be unaffected by the radio knots, indicating that the radio jet is not the principal driving force on the outflowing NLR clouds. However, the velocities of the fainter NLR clouds are split near knots in the jet, indicating a possible interaction. Biconical outflow models were generated to match the data and for comparison to previous models done with lower dispersion observations. The general trend is an increase in radial velocity roughly proportional to distance from the nucleus followed by a linear decrease after roughly 100 parsec similar to that seen in other Seyfert galaxies, indicating common acceleration/deceleration mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا