ترغب بنشر مسار تعليمي؟ اضغط هنا

The Pulsar Wind Nebula of G11.2-0.3

55   0   0.0 ( 0 )
 نشر من قبل Cindy Tam
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-resolution radio and X-ray studies of the composite supernova remnant G11.2-0.3. Using archival VLA data, we perform radio spectral tomography to measure for the first time the spectrum of the shell and plerion separately. We compare the radio morphology of each component to that observed in the hard and soft Chandra X-ray images. We measure the X-ray spectra of the shell and the emission in the interior and discuss the hypothesis that soft X-ray emission interior to the shell is the result of the expanding pulsar wind shocking with the supernova ejecta. We also see evidence for spatial variability in the hard X-ray emission near the pulsar, which we discuss in terms of ion mediated relativistic shocks.



قيم البحث

اقرأ أيضاً

We present Chandra X-ray Observatory imaging observations of the young Galactic supernova remnant G11.2-0.3. The image shows that the previously known young 65-ms X-ray pulsar is at position (J2000) RA 18h 11m 29.22s, DEC -19o 25 27.6, with 1 sigma e rror radius 0.6. This is within 8 of the geometric center of the shell. This provides strong confirming evidence that the system is younger, by a factor of ~12, than the characteristic age of the pulsar. The age discrepancy suggests that pulsar characteristic ages can be poor age estimators for young pulsars. Assuming conventional spin down with constant magnetic field and braking index, the most likely explanation for the age discrepancy in G11.2-0.3 is that the pulsar was born with a spin period of ~62 ms. The Chandra image also reveals, for the first time, the morphology of the pulsar wind nebula. The elongated hard-X-ray structure can be interpreted as either a jet or a Crab-like torus seen edge on. This adds to the growing list of highly aspherical pulsar wind nebulae and argues that such structures are common around young pulsars.
The superb spatial resolution of Chandra has allowed us to detect a 20-long tail behind the Geminga pulsar, with a hard spectrum (photon index 1.0+/-0.2) and a luminosity (1.3+/-0.2) 10^{29} ergs/s in the 0.5 - 8 keV band, for an assumed distance of 200 pc. The tail could be either a pulsar jet, confined by a toroidal magnetic field of about 100 microGauss, or it can be associated with the shocked relativistic wind behind the supersonically moving pulsar confined by the ram pressure of the oncoming interstellar medium. We also detected an arc-like structure 5 - 7 ahead of the pulsar, extended perpendicular to the tail, with a factor of 3 lower luminosity. We see a 3-sigma enhancement in the Chandra image apparently connecting the arc with the southern outer tail that has been possibly detected with XMM-Newton. The observed structures imply that the Gemingas pulsar wind is intrinsically anisotropic.
We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2-0.3 and its central pulsar PSR J1811-1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-la w component in the shell with photon index Gamma = 2.1 +/- 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with Integral, we find that the pulsar spectrum can be fit by a power-law with Gamma=1.32 +/- 0.07 up to 300 keV without evidence of curvature.
We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100-m Radio Telescope. Removal of flux density contributions from a superimposed ion{H}{2} region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index ${alpha}={-0.45 pm 0.20}$ below the break and ${alpha}={-0.87 pm 0.10}$ above it (${S}_ u propto{ u^{alpha}}$). The spectral break is more than three times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of $sim$20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of $sim$1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of ${sim}50degr$ east of the North Celestial Pole and is pointing away from us towards the south-west. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is $Sigma_{1 GHz} sim 5.4 times 10^{-23}$ OAWatt m$^{-2}$ Hz$^{-1}$ sr$^{-1}$ (assuming a radio spectral index of $alpha = -0.5$), lower than the faintest shell-type remnant known to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا