ترغب بنشر مسار تعليمي؟ اضغط هنا

A uniform analysis of the Lyman alpha forest at z = 0-5: III. HST FOS Spectral Atlas

122   0   0.0 ( 0 )
 نشر من قبل Adam Dobrzycki
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the absorption line spectra of all quasars observed with the high resolution gratings of the Faint Object Spectrograph on board the Hubble Space Telescope. We examined 788 spectra for 334 quasars, and present line lists and identifications of absorption lines in the spectra of 271 of them. Analysis of the statistics of the Ly-alpha and metal absorption systems are presented in companion papers (Dobrzycki et al. 2001; Scott et al. 2001; Morita et al. 2001). The data and several analysis products are available electronically and on the authors web site.

قيم البحث

اقرأ أيضاً

We present results on the evolution and clustering of Ly-alpha lines at low z. The sample contains 1298 Ly-alpha lines from 165 quasar spectra mined from the archives of the HST/FOS. Our sample extends to z=1.7, slightly higher than the sample analyz ed by the HST Quasar Absorption Line Key Project. We confirm the Key Project result that the number density evolution of Ly-alpha lines at low z can be described by a power law that is significantly flatter than that found at high z. We find gamma=0.54+/-0.21 for lines with equivalent widths greater than 0.24 A, and gamma=0.60+/-0.14 using a variable EQW threshold, somewhat steeper than obtained previously. We find that the difference is likely attributable to different coverage of the two samples. The results concerning gamma are not significantly affected if one includes Ly-alpha lines from metal systems. Object to object fluctuations in the number of lines detected are small, indicating a high degree of uniformity in the IGM on large scales. We find marginal evidence that weak and strong lines undergo different evolution. We find weak clustering for Ly-alpha lines at Delta(V)<500 km/s, weaker than earlier analysis by Ulmer of a subsample of the Key Project data. We see no correlations for metal system-Ly-alpha forest or extensive metal system-Ly-alpha forest combinations.
We measure the amount of absorption in the Lyman-alpha forest at 0 < z < 1.6 in HST FOS spectra of 74 QSOs. At 0 < z < 1.6 we find that 79% of the absorption is from the low density intergalactic medium, 12% from metals and 9% from the strong H I lin es, nearly identical to the percentages (78, 15 and 7) that we measured independently at z=2 from spectra taken with the Kast spectrograph on the Lick 3-m. At z=1 the low density intergalactic medium absorbs 0.037 +/- 0.004 of the flux. The error includes some but not all of the uncertainty in the continuum level. The remaining part gives relative errors of approximately 0.21 when we report the mean absorption in eight independent redshift intervals, and 0.047 when we average over all redshifts. We find 1.46 times more absorption from the low density intergalactic medium than comes from Ly-alpha lines that Bechtold et al. 2002 listed in the same spectra. The amount of absorption increases with z and can be fit by a power law in (1+z) with index 1.01. This corresponds to no change in the number of lines, of fixed rest frame equivalent widths, per unit redshift, consistent with the Janknecht et al. 2006 results on the distribution of lines. When we include similar measurements from higher redshifts, we need more degrees of freedom to fit the amount of absorption at 0 < z < 3.2. A power law with a break in slope, changing from index 1.5 at low z to 3.0 above z ~ 1.1 is a better but only marginally acceptable fit. We also calculate two other continuous statistics, the flux probability distribution function and the flux autocorrelation function that is non zero out to v ~ 500 km/sec at 0.5 < z < 1.5.
In Paper III of our series A Uniform Analysis of the Ly-alpha forest at z=0 - 5, we presented a set of 270 quasar spectra from the archives of the Faint Object Spectrograph on the Hubble Space Telescope. A total of 151 of these spectra, yielding 906 lines, are suitable for using the proximity effect signature to measure J( u_0), the mean intensity of the hydrogen-ionizing background radiation field, at low redshift. Using a maximum likelihood technique and the best estimates possible for each QSOs Lyman limit flux and systemic redshift, we find J( u_0)= 7.6^+9.4_-3.0 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1 at at 0.03 < z < 1.67. This is in good agreement with the mean intensity expected from models of the background which incorporate only the known quasar population. When the sample is divided into two subsamples, consisting of lines with z < 1 and z > 1, the values of J( u_0) found are 6.5^+38._-1.6 x 10^-23 ergs s^-1 cm^-2 Hz^-1 sr^-1, and 1.0^+3.8_-0.2 x 10^-22 ergs s^-1 cm^-2 Hz^-1 sr^-1, respectively, indicating that the mean intensity of the background is evolving over the redshift range of this data set. Relaxing the assumption that the spectral shapes of the sample spectra and the background are identical, the best fit HI photoionization rates are found to be 6.7 x 10^-13 s^-1 for all redshifts, and 1.9 x 10^-13 s^-1 and 1.3 x 10^-12 s^-1 for z < 1 and z > 1, respectively. This work confirms that the evolution of the number density of Ly-alpha lines is driven by a decrease in the ionizing background from z ~ 2 to z ~ 0 as well as by the formation of structure in the intergalactic medium. (Abridged)
We present the analysis of a sample of the Ly-$alpha$ forest spectra of 152 quasars taken with the HST FOS. The Ly-$alpha$ lines show little evolution at $0<z<1.7$. We see a difference between the evolution indices for weak and strong lines.
This paper joins a series compiling consistent emission line measurements of large AGN spectral databases, useful for reliable statistical studies of emission line properties. It is preceded by emission line measurements of 993 spectra from the Large Bright Quasar Survey (Forster et al. 2001) and 174 spectra of AGN obtained from the Faint Object Spectrograph (FOS) on HST prior to the installation of COSTAR (Kuraszkiewicz et al. 2002). This time we concentrate on 220 spectra obtained with the FOS after the installation of COSTAR, completing the emission line analysis of all FOS archival spectra. We use the same automated technique as in previous papers, which accounts for Galactic extinction, models blended optical and UV iron emission, includes Galactic and intrinsic absorption lines and models emission lines using multiple Gaussians. We present UV and optical emission line parameters (equivalent widths, fluxes, FWHM, line positions) for a large number (28) of emission lines including upper limits for undetected lines. Further scientific analyses will be presented in subsequent papers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا