ﻻ يوجد ملخص باللغة العربية
The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.
Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller th
The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can
Coronal rain is the well-known phenomenon in which hot plasma high in the Suns corona undergoes rapid cooling (from > 10^6 K to < 10^4 K), condenses, and falls to the surface. Coronal rain appears frequently in active region coronal loops and is very
The central region of the Galaxy has been observed at 580, 620 and 1010 MHz with the Giant Metrewave Radio Telescope (GMRT). We detect emission from Sgr-A*, the compact object at the dynamical centre of the Galaxy, and estimate its flux density at 62
The results of the first observations of Type IV bursts at frequencies 10-30 MHz are presented. These observations were carried out at radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) during the period 2003-2006. Detection of T