ترغب بنشر مسار تعليمي؟ اضغط هنا

A four-hours long burst from Serpens X-1

39   0   0.0 ( 0 )
 نشر من قبل R. Cornelisse
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During a serendipitous observation of the BeppoSAX Wide Field Cameras, a very long Type I X-ray burst was observed from the low mass X-ray binary Serpens X-1. The burst lasted for approximately 4 hours and had an exponential decay time of 69+/-2 min (2-28 keV). The bolometric peak-luminosity is (1.6+/-0.2)x10^38 erg/s and the fluence (7.3+/-1.4)x10^41 erg. The first normal Type I burst was observed 34 days after the superburst. This is in rough agreement with recent predictions for unstable carbon burning in a heavy element ocean.


قيم البحث

اقرأ أيضاً

Here we report results of an INTEGRAL-AO1 observation of the X-ray burst and atoll source Ser X-1 performed in May 2003. The object was observed for a total on-source time of 400 ks but nearly 8 degrees off-axis due to its amalgamation with an observ ation of SS 433, the pointing target source. Ser X-1 has been clearly detected up to 30 keV with unprecedented positional accuracy for high-energy emission. The 20-30 keV light curve showed substantial variability during the observation. Comparison with previous observations indicates that the source was in its high (`banana) state and displayed a soft spectrum during the INTEGRAL pointing. A (non simultaneous) radio-to-gamma-rays broad-band spectral energy distribution is also presented for the first time and discussed.
We report on an approximately twelve hour long X-ray flare from the low-mass X-ray binary KS 1731-260. The flare has a rise time of less than 13 min and declines exponentially with a decay time of 2.7 hours. The flare emission is well described by bl ack-body radiation with peak temperature of 2.4 keV. The total energy release from the event is 10^{42} erg (for an assumed distance of 7 kpc). The flare has all the characteristics of thermo-nuclear X-ray bursts (so-called type I X-ray bursts), except for its very long duration and therefore large energy release (factor of 1500-4000 longer and 250-425 more energy than normal type I X-ray bursts from this source). The flare is preceded by a short and weak X-ray burst, possibly of type I. Days to weeks before the flare, type I X-ray bursts were seen at a rate of ~3 per day. However, after the flare type I X-ray bursting ceased for at least a month, suggesting that the superburst affected the type I bursting behaviour. The persistent emission is not significantly different during the non-bursting period. We compare the characteristics of this event with similar long X-ray flares, so-called superbursts, seen in other sources (4U 1735-44, 4U 1820-30, 4U 1636-53, Ser X-1, GX 3+1). The event seen from KS 1731-260 is the longest reported so far. We discuss two possible mechanisms that might cause these superbursts, unstable carbon burning (as proposed recently) and electron capture by protons with subsequent capture of the resulting neutrons by heavy nuclei.
271 - Xuanyi Dong , Yi Yang 2019
Conventional neural architecture search (NAS) approaches are based on reinforcement learning or evolutionary strategy, which take more than 3000 GPU hours to find a good model on CIFAR-10. We propose an efficient NAS approach learning to search by gr adient descent. Our approach represents the search space as a directed acyclic graph (DAG). This DAG contains billions of sub-graphs, each of which indicates a kind of neural architecture. To avoid traversing all the possibilities of the sub-graphs, we develop a differentiable sampler over the DAG. This sampler is learnable and optimized by the validation loss after training the sampled architecture. In this way, our approach can be trained in an end-to-end fashion by gradient descent, named Gradient-based search using Differentiable Architecture Sampler (GDAS). In experiments, we can finish one searching procedure in four GPU hours on CIFAR-10, and the discovered model obtains a test error of 2.82% with only 2.5M parameters, which is on par with the state-of-the-art. Code is publicly available on GitHub: https://github.com/D-X-Y/NAS-Projects.
Full quantum state tomography (FQST) plays a unique role in the estimation of the state of a quantum system without emph{a priori} knowledge or assumptions. Unfortunately, since FQST requires informationally (over)complete measurements, both the numb er of measurement bases and the computational complexity of data processing suffer an exponential growth with the size of the quantum system. A 14-qubit entangled state has already been experimentally prepared in an ion trap, and the data processing capability for FQST of a 14-qubit state seems to be far away from practical applications. In this paper, the computational capability of FQST is pushed forward to reconstruct a 14-qubit state with a run time of only 3.35 hours using the linear regression estimation (LRE) algorithm, even when informationally overcomplete Pauli measurements are employed. The computational complexity of the LRE algorithm is first reduced from $O(10^{19})$ to $O(10^{15})$ for a 14-qubit state, by dropping all the zero elements, and its computational efficiency is further sped up by fully exploiting the parallelism of the LRE algorithm with parallel Graphic Processing Unit (GPU) programming. Our result can play an important role in quantum information technologies with large quantum systems.
XTE J1701-407 is a new transient X-ray source discovered on June 8th, 2008. More than one month later it showed a rare type of thermonuclear explosion: a long type I X-ray burst. We report herein the results of our study of the spectral and flux evol ution during this burst, as well as the analysis of the outburst in which it took place. We find an upper limit on the distance to the source of 6.1 kpc by considering the maximum luminosity reached by the burst. We measure a total fluence of 3.5*10^{-6} erg/cm^2 throughout the ~20 minutes burst duration and a fluence of 2.6*10^{-3} erg/cm^2 during the first two months of the outburst. We show that the flux decay is best fitted by a power law (index ~1.6) along the tail of the burst. Finally, we discuss the implications of the long burst properties, and the presence of a second and shorter burst detected by Swift ten days later, for the composition of the accreted material and the heating of the burning layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا