ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Ray Tracing for Radiative Transfer around Point Sources

76   0   0.0 ( 0 )
 نشر من قبل Benjamin D. Wandelt
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a novel adaptive ray tracing scheme to solve the equation of radiative transfer around point sources in hydrodynamical simulations. The angular resolution adapts to the local hydrodynamical resolution and hence is of use for adaptive meshes as well as adaptive smooth particle hydrodynamical simulations. Recursive creation of rays ensures ease of implementation. The multiple radial integrations needed to solve the time dependent radiative transfer are sped up significantly using a quad-tree once the rays are cast. Simplifications advantageous for methods with one radiation source are briefly discussed. The suggested method is easily generalized to speed up Monte Carlo radiative transfer techniques. In summary a nearly optimal use of long characteristics is presented and aspects of its implementation and comparison to other methods are given.

قيم البحث

اقرأ أيضاً

We present DART-Ray, a new ray-tracing 3D dust radiative transfer (RT) code designed specifically to calculate radiation field energy density (RFED) distributions within dusty galaxy models with arbitrary geometries. In this paper we introduce the ba sic algorithm implemented in DART-Ray which is based on a pre-calculation of a lower limit for the RFED distribution. This pre-calculation allows us to estimate the extent of regions around the radiation sources within which these sources contribute significantly to the RFED. In this way, ray-tracing calculations can be restricted to take place only within these regions, thus substantially reducing the computational time compared to a complete ray-tracing RT calculation. Anisotropic scattering is included in the code and handled in a similar fashion. Furthermore, the code utilizes a Cartesian adaptive spatial grid and an iterative method has been implemented to optimize the angular densities of the rays originated from each emitting cell. In order to verify the accuracy of the RT calculations performed by DART-Ray, we present results of comparisons with solutions obtained using the DUSTY 1D RT code for a dust shell illuminated by a central point source and existing 2D RT calculations of disc galaxies with diffusely distributed stellar emission and dust opacity. Finally, we show the application of the code on a spiral galaxy model with logarithmic spiral arms in order to measure the effect of the spiral pattern on the attenuation and RFED.
We propose a new approach to the numerical solution of radiative transfer equations with certified a posteriori error bounds. A key role is played by stable Petrov--Galerkin type variational formulations of parametric transport equations and correspo nding radiative transfer equations. This allows us to formulate an iteration in a suitable, infinite dimensional function space that is guaranteed to converge with a fixed error reduction per step. The numerical scheme is then based on approximately realizing this iteration within dynamically updated accuracy tolerances that still ensure convergence to the exact solution. To advance this iteration two operations need to be performed within suitably tightened accuracy tolerances. First, the global scattering operator needs to be approximately applied to the current iterate within a tolerance comparable to the current accuracy level. Second, parameter dependent linear transport equations need to be solved, again at the required accuracy of the iteration. To ensure that the stage dependent error tolerances are met, one has to employ rigorous a posteriori error bounds which, in our case, rest on a Discontinuous Petrov--Galerkin (DPG) scheme. These a posteriori bounds are not only crucial for guaranteeing the convergence of the perturbed iteration but are also used to generate adapted parameter dependent spatial meshes. This turns out to significantly reduce overall computational complexity. Since the global operator is only applied, we avoid the need to solve linear systems with densely populated matrices. Moreover, the approximate application of the global scatterer accelerated through low-rank approximation and matrix compression techniques. The theoretical findings are illustrated and complemented by numerical experiments with non-trivial scattering kernels.
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu lar variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. Its numerical solution is studied in this paper using an adaptive moving mesh discontinuous Galerkin method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Its mesh adaptation ability, accuracy, and efficiency are demonstrated in a selection of one- and two-dimensional numerical examples.
The computation of wave-energy distributions in the mid-to-high frequency regime can be reduced to ray-tracing calculations. Solving the ray-tracing problem in terms of an operator equation for the energy density leads to an inhomogeneous equation wh ich involves a Perron-Frobenius operator defined on a suitable Sobolev space. Even for fairly simple geometries, let alone realistic scenarios such as typical boundary value problems in room acoustics or for mechanical vibrations, numerical approximations are necessary. Here we study the convergence of approximation schemes by rigorous methods. For circular billiards we prove that convergence of finite-rank approximations using a Fourier basis follows a power law where the power depends on the smoothness of the source distribution driving the system. The relevance of our studies for more general geometries is illustrated by numerical examples.
We calculate the radiative heat transfer between two identical metallic one-dimensional lamellar gratings. To this aim we present and exploit a modification to the widely-used Fourier modal method, known as adaptive spatial resolution, based on a str etch of the coordinate associated to the periodicity of the grating. We first show that this technique dramatically improves the rate of convergence when calculating the heat flux, allowing to explore smaller separations. We then present a study of heat flux as a function of the grating height, highlighting a remarkable amplification of the exchanged energy, ascribed to the appearance of spoof-plasmon modes, whose behavior is also spectrally investigated. Differently from previous works, our method allows us to explore a range of grating heights extending over several orders of magnitude. By comparing our results to recent studies we find a consistent quantitative disagreement with some previously obtained results going up to 50%. In some cases, this disagreement is explained in terms of an incorrect connection between the reflection operators of the two gratings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا