ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust emission in massive star-forming regions with PRONAOS: the Orion and M17 molecular clouds

54   0   0.0 ( 0 )
 نشر من قبل Xavier Dupac
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The balloon-borne submillimeter instrument PRONAOS has observed one square degree areas towards the Orion and M17 molecular clouds. The 2 - 3.5 resolution maps obtained in four wide wavelength bands between 200 microns and 600 microns, exhibit the dust distribution in these regions. We analyze the temperature and spectral index of the dust, and we show the anticorrelation between these two parameters. We derive estimations of the ISM column densities and masses in these regions.



قيم البحث

اقرأ أيضاً

51 - Xavier Dupac , M. Giard 2002
We map a 50 x 30 area in and around the M17 molecular complex with the French submillimeter balloon-borne telescope PRONAOS, in order to better understand the thermal emission of cosmic dust and the structure of the interstellar medium. The PRONAOS-S PM instrument has an angular resolution of about 3, corresponding to a size of 2 pc at the distance of this complex, and a high sensitivity up to 0.8 MJy/sr. The observations are made in four wide submillimeter bands corresponding to effective wavelengths of 200, 260, 360 and 580 um. Using an improved map-making method for PRONAOS data, we map the M17 complex and faint condensations near the dense warm core. We derive maps of both the dust temperature and the spectral index, which vary over a wide range, from about 10 K to 100 K for the temperature and from about 1 to 2.5 for the spectral index. We show that these parameters are anticorrelated, the cold areas (10-20 K) having a spectral index around 2, whereas the warm areas have a spectral index between 1 and 1.5. We discuss possible causes of this effect, and we propose an explanation involving intrinsic variations of the grain properties. Indeed, to match the observed spectra with two dust components having a spectral index equal to 2 leads to very large and unlikely amounts of cold dust. We also give estimates of the column densities and masses of the studied clumps. Three cold clumps (14-17 K) could be gravitationally unstable.
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol ecular cloud G174+2.5. We selected all massive molecular clumps in G174+2.5 using archive CO data. For the each clump we determined mass, size and CO column density. After that we performed observations of these clumps. We report about first detections of NH$_3$ and HC$_3$N lines toward the molecular clumps WB89 673 and WB89 668. This means that high-density gas is present there. Physical parameters of molecular gas in the clumps were estimated using the data on ammonia emission. We found that the gas temperature and the hydrogen number density are in the ranges 16-30 K and 2.8-7.2$times10^3$ cm$^{-3}$, respectively. The shock-tracing line of CH$_3$OH molecule at 36.2 GHz is newly detected toward WB89 673.
143 - Guido Garay 2009
We report molecular line and dust continuum observations, made with the SEST telescope, towards four young high-mass star forming regions associated with highly luminous (L> 6x10^5 Lsun) IRAS sources (15290-5546, 15502-5302, 15567-5236 and 16060-5146 ). Molecular emission was mapped in lines of CS (J=2-1, 3-2 and 5-4), SiO (J=2-1 and 3-2), CH3OH (Jk=3k-2k and 2k-1k), and C34S (J=3-2). In addition, single spectra at the peak position were taken in the CO, 13CO and C18O (J=1-0) lines. We find that the luminous star forming regions are associated with molecular gas and dust structures with radii of typically 0.5 pc, masses of ~5x10^3 Msun, column densities of ~5x10^{23} cm^{-2}, molecular hydrogen densities of typically ~2x10^5 cm^{-3} and dust temperatures of ~40 K. The 1.2 mm dust continuum observations further indicate that the cores are centrally condensed, having radial density profiles with power-law indices in the range 1.6-1.9. We find that under these conditions dynamical friction by the gas plays an important role in the migration of high-mass stars towards the central core region, providing an explanation for the observed stellar mass segregation within the cores.
We mapped the kinetic temperature structure of the Orion molecular cloud 1 with para-H2CO(303-202, 322-221, and 321-220) using the APEX 12m telescope. This is compared with the temperatures derived from the ratio of the NH3(2,2)/(1,1) inversion lines and the dust emission. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured averaged line ratios of para-H2CO 322-221/303-202 and 321-220/303-202. The gas kinetic temperatures derived from the para-H2CO line ratios are warm, ranging from 30 to >200 K with an average of 62 K at a spatial density of 10$^5$ cm$^{-3}$. These temperatures are higher than those obtained from NH3(2,2)/(1,1) and CH3CCH(6-5) in the OMC-1 region. The gas kinetic temperatures derived from para-H2CO agree with those obtained from warm dust components measured in the mid infrared (MIR), which indicates that the para-H2CO(3-2) ratios trace dense and warm gas. The cold dust components measured in the far infrared (FIR) are consistent with those measured with NH3(2,2)/(1,1) and the CH3CCH(6-5) line series. With dust at MIR wavelengths and para-H2CO(3-2) on one side and dust at FIR wavelengths, NH3(2,2)/(1,1), and CH3CCH(6-5) on the other, dust and gas temperatures appear to be equivalent in the dense gas of the OMC-1 region, but provide a bimodal distribution, one more directly related to star formation than the other. The non-thermal velocity dispersions of para-H2CO are positively correlated with the gas kinetic temperatures in regions of strong non-thermal motion (Mach number >2.5) of the OMC-1, implying that the higher temperature traced by para-H2CO is related to turbulence on a 0.06 pc scale. Combining the temperature measurements with para-H2CO and NH3(2,2)/(1,1) line ratios, we find direct evidence for the dense gas along the northern part of the OMC-1 10 km s$^{-1}$ filament heated by radiation from the central Orion nebula.
211 - P.D. Klaassen , C.D. Wilson 2007
In order to distinguish between the various components of massive star forming regions (i.e. infalling, outflowing and rotating gas structures) within our own Galaxy, we require high angular resolution observations which are sensitive to structures o n all size scales. To this end, we present observations of the molecular and ionized gas towards massive star forming regions at 230 GHz from the SMA (with zero spacing from the JCMT) and at 22 and 23 GHz from the VLA at arcsecond or better resolution. These observations (of sources such as NGC7538, W51e2 and K3-50A) form an integral part of a multi-resolution study of the molecular and ionized gas dynamics of massive star forming regions (i.e. Klaassen & Wilson 2007). Through comparison of these observations with 3D radiative transfer models, we hope to be able to distinguish between various modes of massive star formation, such as ionized or halted accretion (i.e Keto 2003 or Klaassen et al. 2006 respectively).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا