ﻻ يوجد ملخص باللغة العربية
We present X-ray imaging, timing, and phase resolved spectroscopy of the anomalous X-ray pulsar 1E 2259+58.6 using the Chandra X-ray Observatory. The spectrum is well described by a power law plus blackbody model with power law index = 3.6(1), kT_BB = 0.412(6) keV, and N_H=0.93(3) x 10^{22} cm^{-2}; we find no evidence for spectral features (0.5-7.0 keV). We derive a new, precise X-ray position for the source and determine its spin period, P=6.978977(24) s. Time resolved X-ray spectra show no significant variation as a function of pulse phase. We have detected excess emission beyond 4 arcsec from the central source extending to beyond 100 arcsec, due to the supernova remnant and possibly dust scattering from the interstellar medium.
We present Keck R and I band images of the field of the anomalous X-ray pulsar 1E 2259+58.6. We derive an improved X-ray position from archival ROSAT HRI observations by correcting for systematic (boresight) errors. Within the corresponding error cir
We present an analysis of five X-ray Multi-Mirror Mission (XMM) observations of the anomalous X-ray pulsar (AXP) 1E 2259+586 taken in 2004 and 2005 during its relaxation following its 2002 outburst. We compare these data with those of five previous X
We present the results of a near-infrared monitoring program of the Anomalous X-ray Pulsar 1E 2259+586, performed at the Gemini Observatory. This program began three days after the pulsars 2002 June outburst, and spans ~1.5 years. We find that after
We present near-infrared and optical observations of the field of the Anomalous X-ray Pulsar 1E 2259+58.6 taken with the Keck telescope. We derive a subarcsecond Chandra position and tie it to our optical reference frame using other stars in the fiel
Magnetic field geometry is expected to play a fundamental role in magnetar activity. The discovery of a phase-variable absorption feature in the X-ray spectrum of SGR 0418+5729, interpreted as cyclotron resonant scattering, suggests the presence of v