ﻻ يوجد ملخص باللغة العربية
Since a majority of young low-mass stars are members of multiple systems, the study of their stellar and disk configurations is crucial to our understanding of both star and planet formation processes. Here we present near-infrared adaptive optics observations of the young multiple star system VW Cha. The previously known 0.7 arcsec binary is clearly resolved already in our raw J and K band images. We report the discovery of a new, faint companion to the secondary, at an apparent separation of only 0.1 arcsec or 16 AU. Our high-resolution photometric observations also make it possible to measure the J-K colors of each of the three components individually. We detect an infrared excess in the primary, consistent with theoretical models of a circumprimary disk. Analytical and numerical calculations of orbital stability show that VW Cha may be a stable triple system. Using models for the age and total mass of the secondary pair, we estimate the orbital period to be 74 years. Thus, follow-up astrometric observations might yield direct dynamical masses within a few years, and constrain evolutionary models of low-mass stars. Our results demonstrate that adaptive optics imaging in conjunction with deconvolution techniques is a powerful tool for probing close multiple systems.
To understand the formation of planetary systems, one needs to understand the initial conditions of planet formation, i.e. the young gas-rich planet forming disks. Spatially resolved high-contrast observations are of particular interest, since substr
We present results from an adaptive optics survey for substellar and stellar companions to Sun-like stars. The survey targeted 266 F5-K5 stars in the 3Myr to 3Gyr age range with distances of 10-190pc. Results from the survey include the discovery of
In our ongoing search for close and faint companions around T Tauri stars, we found a very faint (Ks=14.9mag, Ks_0=14.4mag) object, just ~2.67 northwest of the Chamaeleon star-forming region member CT Cha corresponding to a projected separation of ~4
We present an H-band image of the light scattered from circumstellar dust around the nearby (10 pc) young M star AU Microscopii (AU Mic, GJ 803, HD 197481), obtained with the Keck adaptive optics system. We resolve the disk both vertically and radial
We present Keck II adaptive optics near infrared imaging and spectroscopic observations of the central regions of the powerful radio galaxy Cygnus A. The 0.05 resolution images clearly show an unresolved nucleus between two spectacular ionization/sca