ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of the cluster of galaxies Abell496 -Measurements of the elemental abundances in the intracluster medium-

58   0   0.0 ( 0 )
 نشر من قبل Takayuki Tamura
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results from XMM-Newton observations of the relaxed cluster of galaxies Abell~496 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras show a temperature drop and a Fe abundance increase in the intra-cluster medium (ICM) towards the cD galaxy at the cluster center. The abundances of Si and S also show a central enhancement. High resolution soft X-ray spectra obtained with the Reflection Grating Spectrometers provides a strong constraint on the temperature structure in the central cool plasma. Furthermore, the O abundance at the cluster core is accurately measured based on the OVIII Ly alpha line detected with the RGS. Contrary to the Si, S, and Fe abundances, the O abundance is radially constant over the cluster.


قيم البحث

اقرأ أيضاً

Based on XMM-Newton observations of a sample of galaxy clusters, we have measured the elemental abundances (mainly O, Si, S, and Fe) and their spatial distributions in the intracluster medium (ICM). In the outer region of the ICM, observations of the O:Si:S:Fe ratio are consistent with the solar value, suggesting that the metals in the ICM were produced by a mix of supernovae (SNe) Ia and II. On the other hand, around the cD galaxy, the O/Fe ratios are about half of the solar value because of a central excess of the Fe abundance. An increase of the relative contribution from SNe Ia in the cD galaxy to the metal production towards the center is the most likely explanation.
59 - T.Tamura 2004
XMM-Newton observations of 19 galaxy clusters are used to measure the elemental abundances and their spatial distributions in the intracluster medium. The sample mainly consists of X-ray bright and relaxed clusters with a cD galaxy. Along with detail ed Si, S and Fe radial abundance distributions within 300-700 kpc in radius, the O abundances are accurately derived in the central region of the clusters. The Fe abundance maxima towards the cluster center, possibly due to the metals from the cD galaxy,are spatially resolved. The Si and S abundances also exhibit central increases in general, resulting in uniform Fe-Si-S ratios within the cluster. In contrast, the O abundances are in general uniform over the cluster. The mean O to Fe ratio within the cluster core is sub-solar, while that of the cluster scale is larger than the solar ratio. These measurements indicate that most of the Fe-Si-S and O in the intracluster medium have different origins, presumably in supernovae Ia and II, respectively. The obtained Fe and O mass are also used to discuss the past star formation history in clusters.
The results from Suzaku observations of the central region of the Perseus cluster are presented. Deep exposures with the X-ray Imaging Spectrometer provide high quality X-ray spectra from the intracluster medium. X-ray lines from helium-like Cr and M n have been detected significantly for the first time in clusters. In addition, elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are accurately measured within 10 (or 220 kpc) from the cluster center. The relative abundance ratios are found to be within a range of 0.8-1.5 times the solar value. These abundance ratios are compared with previous measurements, those in extremely metal-poor stars in the Galaxy, and theoretical models.
62 - Lisa M. Winter 2006
(abridged) In this paper, we examined XMM Newton EPIC spectra of 14 ultra-luminous X-ray sources (ULXs)in addition to the XMM RGS spectra of two sources (Holmberg II X-1 and Holmberg IX X-1). We determined oxygen and iron abundances of the host galax ys interstellar medium (ISM) using K-shell (O) and L-shell (Fe) X-ray photo-ionization edges towards these ULXs. We found that the oxygen abundances closely matched recent solar abundances for all of our sources, implying that ULXs live in similar local environments despite the wide range of galaxy host properties. Also, we compare the X-ray hydrogen column densities (n_H) for 8 ULX sources with column densities obtained from radio H I observations. The X-ray model n_H values are in good agreement with the H I n_H values, implying that the hydrogen absorption towards the ULXs is not local to the source (with the exception of the source M81 XMM1). In order to obtain the column density and abundance values, we fit the X-ray spectra of the ULXs with a combined power law and one of several accretion disk models. We tested the abundances obtained from the XSPEC models bbody, diskbb, grad, and diskpn along with a power law, finding that the abundances were independent of the thermal model used. We comment on the physical implications of these different model fits. We also note that very deep observations allow a breaking of the degeneracy noted by Stobbart et al. (2006) favoring a high mass solution for the absorbed grad + power law model.
The Centaurus cluster (z=0.0104) was observed with the X-ray Imaging Spectrometer (XIS) onboard the Suzaku X-ray satellite in three pointings, one centered on the cluster core and the other two offset by +-8 in declination. To search for possible bul k motions of the intracluster medium, the central energy of He-like Fe-K line (at a rest-frame energy of 6.7 keV) was examined to look for a positional dependence. Over spatial scales of 50 kpc to 140 kpc around the cluster core, the central line energy was found to be constant within the calibration error of 15 eV. The 90% upper limit on the line-of-sight velocity difference is |Delta_v|< 1400 km/s, giving a tighter constraint than previous measurements. The significant velocity gradients inferred from a previous Chandra study were not detected between two pairs of rectangular regions near the cluster core. These results suggest that the bulk velocity does not largely exceed the thermal velocity of the gas in the central region of the Centaurus cluster. The mean redshift of the intracluster medium was determined to be 0.0097, in agreement with the optical redshift of the cluster within the calibration uncertainty. Implications of the present results for the estimation of the cluster mass are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا