ﻻ يوجد ملخص باللغة العربية
A full set of calculations is presented for inner-shell n = 2 to 3 photoexcitation of the 16 iron charge states: Fe I through Fe XVI. The blend of the numerous absorption lines arising from these excitations (mainly 2p - 3d) forms an unresolved transition array (UTA), which has been recently identified as a prominent feature between 16 - 17 AA in the soft X-ray spectra of active galactic nuclei (AGN). Despite the blending within charge-states, the ample separation between the individual-ion features enables precise diagnostics of the ionization range in the absorbing medium. Column density and turbulent velocity diagnostics are also possible, albeit to a lesser accuracy. An abbreviated set of atomic parameters useful for modeling the Fe 2p - 3d UTA is given. It is shown that the effects of accompanying photoexcitation to higher levels ($n ge$ 4), as well as the associated photoionization edges, may also be relevant to AGN spectra.
We review some of the main physical and statistical properties of the X-ray absorber in AGNs. In particular, we review the distribution of the absorbing column density inferred from X-ray observations of various AGN samples. We discuss the location o
X-rays illuminating the accretion disc in active galactic nuclei give rise to an iron K line and its associated reflection spectrum which are lagged behind the continuum variability by the light-travel time from the source to the disc. The measured l
We used a large, homogeneous sample of 4178 z <= 0.8 Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the strength of Fe II emission and its correlation with other emission lines and physical parameters of active
The majority of Active Galactic Nuclei (AGN) observed by XMM-Newton reveal narrow Fe K-alpha lines at ~ 6.4 keV, due to emission from cold (neutral) material. There is an X-ray Baldwin effect in Type I AGN, in that the equivalent width of the line de
We propose a novel theoretical model to describe a physical identity of the soft X-ray excess, ubiquitously detected in many Seyfert galaxies, by considering a steady-state, axisymmetric plasma accretion within the innermost stable circular orbit (IS