ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Group velocity versus gravity: the coherence function

42   0   0.0 ( 0 )
 نشر من قبل Michal Chodorowski
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In maximum-likelihood analyses of the Local Group (LG) acceleration, the object describing nonlinear effects is the coherence function (CF), i.e. the cross-correlation coefficient of the Fourier modes of the velocity and gravity fields. We study the CF both analytically, using perturbation theory, and numerically, using a hydrodynamic code. The dependence of the function on Omega_m and the shape of the power spectrum is very weak. The only cosmological parameter that the CF is strongly sensitive to is the normalization sigma_8 of the underlying density field. Perturbative approximation for the function turns out to be accurate as long as sigma_8 is smaller than about 0.3. For higher normalizations we provide an analytical fit for the CF as a function of sigma_8 and the wavevector. The characteristic decoherence scale which our formula predicts is an order of magnitude smaller than that determined by Strauss et al. This implies that present likelihood constraints on cosmological parameters from analyses of the LG acceleration are significantly tighter than hitherto reported.



قيم البحث

اقرأ أيضاً

104 - K. Flint , 2001
We present first results of a survey of the Leo I group at 10 Mpc for M_R < -10 dwarf galaxies. This is part of a larger program to measure the faint end of the galaxy luminosity function in nearby poor groups. Our method is optimized to find Local-G roup-like dwarfs down to dwarf spheroidal surface brightnesses, but we also find very large LSB dwarfs in Leo I with no Local Group counterpart. A preliminary measurement of the luminosity function yields a slope consistent with that measured in the Local Group.
107 - D.J. Pisano 2004
High-velocity clouds (HVCs) are clouds of HI seen around the Milky Way with velocities inconsistent with Galactic rotation, have unknown distances and masses and controversial origins. One possibility is that HVCs are associated with the small dark m atter halos seen in models of galaxy formation and distributed at distances of 150 kpc - 1 Mpc. We report on our attempts to detect the analogs to such putative extragalactic clouds in three groups of galaxies similar to our own Local Group using the ATNF Parkes telescope and Compact Array. Eleven dwarf galaxies were found, but no HI clouds lacking stars were detected. Using the population of compact HVCs around the Milky Way as a template, we find that our non-detection of analogs implies that they must be clustered within 160 kpc of the Milky Way (and other galaxies) with an average HI mass <4x10^5 M(sun) at the 95% confidence level. This is in accordance with recent limits derived by other authors. If our groups are true analogs to the Local Group, then this makes the original Blitz et al. and Braun & Burton picture of HVCs residing out to 1 Mpc from the Milky Way extremely unlikely. The total HI mass in HVCs, < 10^8 M(sun), implies that there is not a large reservoir of neutral hydrogen waiting to be accreted onto the Milky Way. Any substantial reservoir of baryonic matter must be mostly ionized or condensed enough as to be undetectable.
Motivated by the apparent order-of-magnitude discrepancy between the observed number of Local Group satellite galaxies, and that predicted by Lambda-CDM hierarchical clustering cosmologies, we explore an alternate suggestion - perhaps the missing sat ellites are not actually ``missing, but are instead ``in disguise. The disguise we consider here is that of the classical HI High-Velocity Clouds. Is it possible that what have been thought of traditionally as a ``Galactic phenomenon, are actually the building blocks of the Local Group? We discuss the strengths and weaknesses of this hypothesis, and highlight avenues of future research which may provide an unequivocal resolution to this contentious issue.
We present several different statistical methods to determine the transverse velocity vector of M31. The underlying assumptions are that the M31 satellites on average follow the motion of M31 through space, and that the galaxies in the outer parts of the Local Group on average follow the motion of the Local Group barycenter through space. We apply the methods to the line-of-sight velocities of 17 M31 satellites, to the proper motions of the 2 satellites M33 and IC 10, and to the line-of-sight velocities of 5 galaxies near the Local Group turn around radius, respectively. This yields 4 independent but mutually consistent determinations of the heliocentric M31 transverse velocities in the West and North directions, with weighted averages <v_W> = -78+/-41 km/s and <v_N> = -38+/-34 km/s. The Galactocentric tangential velocity of M31 is 42 km/s, with 1-sigma confidence interval V_tan <= 56 km/s. The implied M31-Milky Way orbit is bound if the total Local Group mass M exceeds 1.72^{+0.26}_{-0.25}x10^{12} solar masses. If indeed bound, then the timing argument combined with the known age of the Universe implies that M = 5.58^{+0.85}_{-0.72}x10^{12} solar masses. This is on the high end of the allowed mass range suggested by cosmologically motivated models for the individual structure and dynamics of M31 and the Milky Way, respectively. It is therefore possible that the timing mass is an overestimate of the true mass, especially if one takes into account recent results from the Millennium Simulation that show that there is also a theoretical uncertainty of 41 percent (Gaussian dispersion) in timing mass estimates. The M31 transverse velocity implies that M33 is in a tightly bound orbit around M31. This may have led to some tidal deformation of M33. It will be worthwhile to search for observational evidence of this.
A set of HI sources extracted from the north Galactic polar region by the ongoing ALFALFA survey has properties that are consistent with the interpretation that they are associated with isolated minihalos in the outskirts of the Local Group (LG). Unl ike objects detected by previous surveys, such as the Compact High Velocity Clouds of Braun & Burton (1999), the HI clouds found by ALFALFA do not violate any structural requirements or halo scaling laws of the LambdaCDM structure paradigm, nor would they have been detected by extant HI surveys of nearby galaxy groups other than the LG. At a distance of d Mpc, their HI masses range between $5 x 10^4 d^2 and 10^6 d^2 solar and their HI radii between <0.4d and 1.6 d kpc. If they are parts of gravitationally bound halos, the total masses would be on order of 10^8--10^9 solar, their baryonic content would be signifcantly smaller than the cosmic fraction of 0.16 and present in a ionized gas phase of mass well exceeding that of the neutral phase. This study does not however prove that the minihalo interpretation is unique. Among possible alternatives would be that the clouds are shreds of the Leading Arm of the Magellanic Stream.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا