ﻻ يوجد ملخص باللغة العربية
We study the luminosity function and the correlation function of about 1200 z~4 Lyman break galaxies (LBGs) with i<26 that are photometrically selected from deep BRi imaging data of a 618 arcmin^2 area in the Subaru/XMM-Newton Deep Field taken with Subaru Prime Focus Camera. The contamination and completeness of our LBG sample are evaluated, on the basis of the Hubble Deep Field-North (HDF-N) objects, to be 17% and 45%, respectively. We derive the UV (rest 1700A) luminosity functions (LFs) and find a large population of UV-luminous galaxies at z~4. The LFs of the red and blue subsamples imply that the bright LBGs are redder in the UV continuum than the average color of the LBGs. Then we calculate the correlation function over theta = 2-1000 and find that it is fitted fairly well by a power law, omega(theta)=A_omega theta^(-0.8), with A_omega=0.71 +/- 0.26. We estimate the correlation length r_0 (in comoving units) of the two-point spatial correlation function xi(r) = (r/r_0)^(-1.8) to be r_0=2.7 +0.5/-0.6 h^(-1) Mpc (Omega_m=0.3 and Omega_Lambda=0.7). The correlation function shows an excess of omega (theta) on small scales (theta < 5), departing from the power-law fit at > 3 sigma significance level. Interpreting this as being due to galaxy mergers, we evaluate the fraction of galaxies undergoing mergers to be 3.0 +/- 0.9%, which is significantly smaller than those of galaxies at intermediate redshifts.
We perform a spectrophotometric analysis of galaxies at redshifts z = 4 - 6 in cosmological SPH simulations of a Lambda CDM universe. Our models include radiative cooling and heating by a uniform UV background, star formation, supernova feedback, and
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clus
We explore from a statistical point of view the far-infrared (far-IR) and sub-millimeter (sub-mm) properties of a large sample of LBGs (22,000) at z~3 in the COSMOS field. The large number of galaxies allows us to split it in several bins as a functi
We investigate several fundamental properties of z ~ 4 Lyman-break galaxies by comparing observations with the predictions of a semi-analytic model based on the Cold Dark Matter theory of hierarchical structure formation. We use a sample of B_{435}-d
We report on the status of large surveys of photometrically selected star forming galaxies at z~3 and z~4, with particular emphasis on both the advantages and the limitations of selecting objects using the ``Lyman break technique. Current results on