ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB 990704: the most X-ray rich BeppoSAX gamma-ray burst

60   0   0.0 ( 0 )
 نشر من قبل Marco Feroci
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Feroci




اسأل ChatGPT حول البحث

We present the X- and $gamma$-ray detection of GRB 990704 and the discovery and study of its X-ray afterglow, 1SAX J1219.5-0350. Two pointed BeppoSAX observations with the narrow field instruments were performed on this source, separated in time by one week. The decay of the X-ray flux within the first observation appears unusually slow, being best-fit by a power law with negative index 0.83$pm$0.16. Such a slow decay is consistent with the non-detection in our second observation, but its back-extrapolation to the time of the GRB largely underestimates the detected GRB X-ray prompt emission. In addition, the GRB prompt event shows, among the BeppoSAX-WFC detected sample, unprecedentedly high ratios of X- and gamma-ray peak fluxes (F$_{2-10 keV}$/F$_{40-700 keV}$$sim$0.6, and F$_{2-26 keV}$/F$_{40-700 keV}$$sim$1.6) and fluences (S$_{2-10 keV}$/S$_{40-700 keV}$$sim$1.5 and S$_{2-26 keV}$/S$_{40-700 keV}$$sim$2.8), making it, among the BeppoSAX arcminute-localized GRBs, the closest to the recently discovered class of Fast X-ray Transients.

قيم البحث

اقرأ أيضاً

GRB 040403 is one of the faintest gamma-ray bursts for which a rapid and accurate localization has been obtained. Here we report on the gamma-ray properties of this burst, based on observations with the IBIS instrument aboard INTEGRAL, and the result s of searches for its optical afterglow. The steep spectrum (power law photon index = 1.9 in the 20-200 keV range) implies that GRB 040403 is most likely an X-ray rich burst. Our optical limit of R > 24.2 at 16.5 hours after the burst, indicates a rather faint afterglow, similar to those seen in other relatively soft and faint bursts.
We present a comprehensive multiwavelength analysis of the bright, long duration gamma-ray burst GRB 070125, comprised of observations in $gamma$-ray, X-ray, optical, millimeter and centimeter wavebands. Simultaneous fits to the optical and X-ray lig ht curves favor a break on day 3.78, which we interpret as the jet break from a collimated outflow. Independent fits to optical and X-ray bands give similar results in the optical bands but shift the jet break to around day 10 in the X-ray light curve. We show that for the physical parameters derived for GRB 070125, inverse Compton scattering effects are important throughout the afterglow evolution. While inverse Compton scattering does not affect radio and optical bands, it may be a promising candidate to delay the jet break in the X-ray band. Radio light curves show rapid flux variations, which are interpreted as due to interstellar scintillation, and are used to derive an upper limit of $2.4 times 10^{17}$ cm on the radius of the fireball in the lateral expansion phase of the jet. Radio light curves and spectra suggest a high synchrotron self absorption frequency indicative of the afterglow shock wave moving in a dense medium. Our broadband modeling favors a constant density profile for the circumburst medium over a wind-like profile ($R^{-2}$). However, keeping in mind the uncertainty of the parameters, it is difficult to unambiguously distinguish between the two density profiles. Our broadband fits suggest that event is a burst with high radiative efficiency ($> 60 %$).
We analyze the BeppoSAX measurements of the prompt and afterglow emission of the gamma-ray burst GRB010222. Among 45 GRBs detected with the Wide Field Cameras on BeppoSAX, the 40-700 keV fluence of (9.3+/-0.3)E-5 erg cm-2 is only surpassed by GRB9901 23. In terms of the isotropic 20-2000 keV energy output of 7.8E53 erg, it ranks third of all GRBs with measured distances. Since this burst is so bright, the data provide complete and valuable coverage up to 65 hr after the event, except for a gap between 3.5 and 8.0 hr. The 2-10 keV flux history shows clear signs of a break which is consistent with a break seen in the optical, and provides supporting evidence for the achromatic nature of the break. An explanation for the break in the context of a collimated expansion is not straightforward. Rather, a model is favored whereby the fireball is braked to the non-relativistic regime quickly (within a fraction of day) by a dense 1E6 cm-3 circumburst medium. This implies that, after a mild beaming correction, GRB010222 may be the most energetic burst observed thus far. The X-ray decay index after the break is 1.33+/-0.04, the spectral index 0.97+/-0.05. The decay is, with unprecedented accuracy, identical to that observed in the optical.
120 - M. De Pasquale 2005
We present the X-ray afterglow catalog of BeppoSAX from the launch of the satellite to the end of the mission. Thirty-three X-ray afterglows were securely identified based on their fading behavior out of 39 observations. We have extracted the continu um parameters (decay index, spectral index, flux, absorption) for all available afterglows. We point out a possible correlation between the X-ray afterglow luminosity and the energy emitted during the prompt $gamma$-ray event. We do not detect a significant jet signature within the afterglows, implying a lower limit on the beaming angle, neither a standard energy release when X-ray fluxes are corrected for beaming. Our data support the hypothesis that the burst should be surrounded by an interstellar medium rather than a wind environment, and that this environment should be dense. This may be explained by a termination shock located near the burst progenitor. We finally point out that some dark bursts may be explained by an intrinsic faintness of the event, while others may be strongly absorbed.
324 - M. Feroci 1997
The Italian-Dutch satellite for X-ray Astronomy BeppoSAX is successfully operating on a 600 km equatorial orbit since May 1996. We present here the in-flight performances of the Gamma Ray Burst Monitor experiment during its first year of operation. T he GRBM is the secondary function of the four CsI(Na) slabs primarily operating as an active anticoincidence of the PDS hard X-ray experiment.. It has a geometric area of about 4000 cm2 but, due to its location in the core of the satellite its effective area is dependent on the energy and direction of the impinging photons. A dedicated electronics allows to trigger on cosmic gamma-ray bursts. When the trigger condition is satisfied the light curve of the event is recorded from 8 s before to 98 s after the trigger time, with a maximum time resolution of 0.48 ms, in an energy band of 40-700 keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا