ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex Unpinning in Precessing Neutron Stars

43   0   0.0 ( 0 )
 نشر من قبل Bennett Link
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron vortices thought to exist in the inner crust of a neutron star interact with nuclei and are expected to pin to the nuclear lattice. Evidence for long-period precession in pulsars, however, requires that pinning be negligible. We estimate the strength of vortex pinning and show that hydrodynamic forces present in a precessing star are likely sufficient to unpin all of the vortices of the inner crust. In the absence of precession, however, vortices could pin to the lattice with sufficient strength to explain the giant glitches observed in many radio pulsars.

قيم البحث

اقرأ أيضاً

The pinning and collective unpinning of superfluid vortices in a decelerating container is a key element of the canonical model of neutron star glitches and laboratory spin-down experiments with helium II. Here the dynamics of vortex (un)pinning is e xplored using numerical Gross-Pitaevskii calculations, with a view to understanding the triggers for catastrophic unpinning events (vortex avalanches) that lead to rotational glitches. We explicitly identify three triggers: rotational shear between the bulk condensate and the pinned vortices, a vortex proximity effect driven by the repulsive vortex-vortex interaction, and sound waves emitted by moving and repinning vortices. So long as dissipation is low, sound waves emitted by a repinning vortex are found to be sufficiently strong to unpin a nearby vortex. For both ballistic and forced vortex motion, the maximum inter-vortex separation required to unpin scales inversely with pinning strength.
We discuss collective excitations (both fundamental and solitonic excitations) of quantized superfluid vortices in neutron $^3P_2$ superfluids, which likely exist in high density neutron matter such as neutron stars. Besides the well-known Kelvin mod es (translational zero modes), we find a gapfull mode whose low-energy description takes the simple form of a double sine-Gordon model. The associated kink solution and its effects on spontaneous magnetization inside the vortex core are analyzed in detail.
The scale-invariant glitch statistics observed in individual pulsars (exponential waiting-time and power-law size distributions) are consistent with a critical self-organization process, wherein superfluid vortices pin metastably in macroscopic domai ns and unpin collectively via nearest-neighbor avalanches. Macroscopic inhomogeneity emerges naturally if pinning occurs at crustal faults. If, instead, pinning occurs at lattice sites and defects, which are macroscopically homogeneous, we show that an alternative, noncritical self-organization process operates, termed coherent noise, wherein the global Magnus force acts uniformly on vortices trapped in a range of pinning potentials and undergoing thermal creep. It is found that vortices again unpin collectively, but not via nearest-neighbor avalanches, and that, counterintuitively, the resulting glitch sizes are scale invariant, in accord with observational data. A mean-field analytic theory of the coherent noise process, supported by Monte-Carlo simulations, yields a power-law size distribution, between the smallest and largest glitch, with exponent $a$ in the range $-2leq a leq 0$. When the theory is fitted to data from the nine most active pulsars, including the two quasiperiodic glitchers PSR J0537$-$6910 and PSR J0835$-$4510, it directly constrains the distribution of pinning potentials in the star, leading to two conclusions: (i) the potentials are broadly distributed, with the mean comparable to the standard deviation; and (ii) the mean potential decreases with characteristic age. An observational test is proposed to discriminate between nearest-neighbor avalanches and coherent noise.
The flow of quantized vortex lines in superfluid 3He-B is laminar at high temperatures, but below 0.6 Tc turbulence becomes possible, owing to the rapidly decreasing mutual friction damping. In the turbulent regime a vortex evolving in applied flow m ay become unstable, create new vortices, and start turbulence. We monitor this single-vortex instability with NMR techniques in a rotating cylinder. Close to the onset temperature of turbulence, an oscillating component in NMR absorption has been observed, while the instability generates new vortices at a low rate ~ 1 vortex/s, before turbulence sets in. By comparison to numerical calculations, we associate the oscillations with spiral vortex motion, when evolving vortices expand to rectilinear lines.
54 - P. Chris Fragile 2019
Across black hole (BH) and neutron star (NS) low-mass X-ray binaries (LMXBs), there appears to be some correlation between certain high- and low-frequency quasi-periodic oscillations (QPOs). In a previous paper, we showed that for BH LMXBs, this coul d be explained by the simultaneous oscillation and precession of a hot, thick, torus-like corona. In the current work, we extend this idea to NS LMXBs by associating the horizontal branch oscillations (HBO) with precession and the upper-kiloHertz (ukHz) QPO with vertical epicyclic motion. For the Atoll source 4U 1608-52, the model can match many distinct, simultaneous observations of the HBO and ukHz QPO by varying the inner and outer radius of the torus, while maintaining fixed values for the mass (M_{NS}) and spin (a_*) of the neutron star. The best fit values are M_{NS} = 1.38 pm 0.03 M_odot and a_* = 0.325 pm 0.005. By combining these constraints with the measured spin frequency, we are able to obtain an estimate for the moment of inertia of I_{NS} = 1.40 pm 0.02 times 10^{45} g cm^2, which places constraints on the equation of state. The model is unable to fit the lower-kHz QPO, but evidence suggests that QPO may be associated with the boundary layer between the accretion flow and the neutron star surface, which is not treated in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا