ﻻ يوجد ملخص باللغة العربية
The differential spectrum of TeV gamma rays between 1.5 TeV and 20 TeV from the north-east rim of SN1006 was obtained from the data observed in 1996 and 1997 using the 3.8m CANGAROO v{C}erenkov telescope. This spectrum matches the model calculated using the Inverse Compton (IC) process with 2.7k Cosmic Microwave Background (CMB). This enables us to estimate the absolute strength of the magnetic field around the shock and the maximum energy of accelerated electrons with the considerable accuracy: the obtained field strength and maximum electron energy are $4pm1$ $mu$G and 50 TeV respectively. Also we have detected again the TeV gamma-ray emission from the same position using the 10m CANGAROO-II telescope in 2000, and the preliminary spectrum around 1 TeV region is presented in this conference. The two spectra agree well in the overlapped energy region.
We report the results of an X-ray proper motion measurement for the NW rim of SN1006, carried out by comparing Chandra observations from 2001 and 2012. The NW limb has predominantly thermal X-ray emission, and it is the only location in SN1006 with s
We present the deepest optical spectrum acquired to date of Balmer-dominated shocks in the NW rim of SN 1006. We detect the broad and narrow components of H-alpha, H-beta and H-gamma and report the first detection of the He I 6678 emission line in th
Like many young supernova remnants, SN 1006 exhibits what appear to be clumps of ejecta close to or protruding beyond the main blast wave. In this paper we examine 3 such protrusions along the east rim. They are semi-aligned with ejecta fingers behin
The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal
We report on observations of SN 1006 with the X-ray Imaging Spectrometers (XIS) on board Suzaku. We firmly detected K-shell emission from Fe, for the first time, and find that the Fe ionization state is quite low. The broad band spectrum extracted fr