ترغب بنشر مسار تعليمي؟ اضغط هنا

HD Molecular Lines in an Absorption System at Redshift z = 2.3377

315   0   0.0 ( 0 )
 نشر من قبل Ivanchik Alexandre
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Varshalovich




اسأل ChatGPT حول البحث

We have analyzed the spectrum of the quasar PKS 1232+082 obtained by Petitjean et al. (2000). HD molecular lines are identified in an absorption system at the redshift z=2.3377. The column density of HD molecules in the system is estimated, N(HD)=(1-4)x10^{14} cm^{-2}. The temperature of excitation of the first rotational level J=1 relative to the ground state J=0 is T_ex=70+-7 K. This is, to our knowledge, the first detection of HD molecules at high redshift.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of the H_2 and HD absorption lines detected in the Damped Lyman-alpha (DLA) system at z_abs=2.3377 towards the quasar Q1232+082. We show that this intervening cloud has a covering factor smaller than unity and covers on ly part of the QSO broad emission line region. The zero flux level has to be corrected at the position of the saturated H_2 and optically thin HD lines by about 10%. We accurately determine the Doppler parameter for HD and CI lines (b = 1.86+/-0.20 km/s). We find a ratio N(HD)/N(H_2)=(7.1 +3.7 -2.2)x10^-5 that is significantly higher than what is observed in molecular clouds of the Galaxy. Chemical models suggest that in the physical conditions prevailing in the central part of molecular clouds, deuterium and hydrogen are mostly in their molecular forms. Assuming this is true, we derive D/H = (3.6 +1.9 -1.1)x10^-5. This implies that the corresponding baryon density of the Universe is Omega_b h^2 = (0.0182 +0.0047 -0.0042). This value coincides within 1sigma with that derived from observations of the CMBR as well as from observations of the D/H atomic ratio in low-metallicity QSO absorption line systems. The observation of HD at high redshift is therefore a promising independent method to constrain Omega_b. This observation indicates as well a low astration factor of deuterium. This can be interpreted as the consequence of an intense infall of primordial gas onto the associated galaxy.
We present the first detections of CH3SH, C3H+, C3N, HCOOH, CH2CHCN, and H2CN in an extragalactic source. Namely the spiral arm of a galaxy located at z=0.89 on the line of sight to the radio-loud quasar PKS 1830-211. OCS, SO2, and NH2CN were also de tected, raising the total number of molecular species identified in that early time galaxy to 54, not counting isotopologues. The detections were made in absorption against the SW quasar image, at 2 kpc from the galaxy centre, over the course of a Q band spectral line survey made with the Yebes 40 m telescope (rest-frame frequencies: 58.7-93.5 GHz). We derived the rotational temperatures and column densities of those species, which are found to be subthermally excited. The molecular abundances, and in particular the large abundances of C3H+ and of several previously reported cations, are characteristic of diffuse or translucent clouds with enhanced UV radiation or strong shocks.
A 12 year-long monitoring of the absorption caused by a z=0.89 spiral galaxy on the line of sight to the radio-loud gravitationally lensed quasar PKS 1830-211 reveals spectacular changes in the HCO+ and HCN (2-1) line profiles. The depth of the absor ption toward the quasar NE image increased by a factor of ~3 in 1998-1999 and subsequently decreased by a factor >=6 between 2003 and 2006. These changes were echoed by similar variations in the absorption line wings toward the SW image. Most likely, these variations result from a motion of the quasar images with respect to the foreground galaxy, which could be due to a sporadic ejection of bright plasmons by the background quasar. VLBA observations have shown that the separation between the NE and SW images changed in 1997 by as much as 0.2 mas within a few months. Assuming that motions of similar amplitude occurred in 1999 and 2003, we argue that the clouds responsible for the NE absorption and the broad wings of the SW absorption should be sparse and have characteristic sizes of 0.5-1 pc.
Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere.
In this work, we present new calculations of the observables associated with synthetic metal and HI absorption lines in the spectra of high redshift quasars, inspired by questions and limitations raised in work with a uniform Haardt-Madau 2012 ultrav iolet background (UVB). We introduce variations at $z sim$ 6 to the UVB and HI self--shielding and explore the sensitivity of the absorption features to modifications of the hardness of the UVB. We find that observed SiIV and low ionization states (e.g. CII, SiII, OI) are well represented by a soft UV ionizing field at $z =$ 6 but, this same prescription, fails to reproduce the statistical properties of the observed ion CIV absorber population. Therefore, we recommend a moderate reduction of the UVB at this redshift, an emissivity change between the UVB models that lies in between the Haardt-Madau 2012 emissivity J$_{ u}$ and one with a dex below J$_{ u} -$ 1 at 1 Ryd. On the other hand, variations in the HI self--shielding (SSh) prescription leave a non--negligible imprint in the calculated HI column density distribution function (CDDF) at $z =$ 4 and the comoving mass density of neutral Hydrogen (and the associated calculation with damped Lyman--$alpha$ absorber systems) at 4 $< z <$ 6. We conclude that small variations in the UVB and HI SSh at $z sim$ 6 play an important role in improving the estimation of metal ions and HI statistics at this redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا