ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear evolution of thermally unstable slim accretion discs with a diffusive form of viscosity

98   0   0.0 ( 0 )
 نشر من قبل Ewa Szuszkiewicz
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are carrying out a programme of non-linear time-dependent numerical calculations to study the evolution of the thermal instability driven by radiation pressure in transonic accretion discs around black holes. In our previous studies we first investigated the original version of the slim-disc model with low viscosity (parameter alpha = 0.001) for a stellar-mass (10 solar masses) black hole, comparing the behaviour seen with results from local stability analysis (which were broadly confirmed). In some of the unstable models, we saw a violently evolving shock-like feature appearing near to the sonic point. Next, we retained the original model simplifications but considered a higher value of alpha = 0.1 and demonstrated the existence of limit-cycle behaviour under suitable circumstances. The present paper describes more elaborate calculations with a more physical viscosity prescription and including a vertically integrated treatment of acceleration in the vertical direction. Limit-cycle behaviour is still found for a model with alpha = 0.1, giving a strong motivation to look for its presence in observational data.


قيم البحث

اقرأ أيضاً

Thermal instability driven by radiation pressure might be relevant for intrinsically bright accreting sources. The most promising candidate where this instability seems to be at work is one of the two known galactic superluminal sources, GRS 1915+105 (Belloni et al. 1997). In spite of being of relevance, this scenario has not yet been confirmed by proper time-dependent modelling. Non-linear time-dependent calculations performed by Szuszkiewicz and Miller (1998) show that thermally unstable discs undergo limit-cycle behaviour with successive evacuation and refilling of the central parts of the disc. This evolution is very similar to the one proposed by Belloni et al. (1997) in their phenomenological model. Further investigations are needed to confirm the thermal instability being operational in this source. First of all the spectra emitted from the disc during its evolution should be calculated and compared with observations. Here such spectra are computed assuming local blackbody emission from the best studied transonic disc model.
We present a non-linear numerical model for a geometrically thin accretion disk with the addition of stochastic non-linear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.
We numerically construct slim, global, vertically integrated models of optically thin, transonic accretion discs around black holes, assuming a regularity condition at the sonic radius and boundary conditions at the outer radius of the disc and near the black hole. In agreement with several previous studies, we find two branches of shock-free solutions, in which the cooling is dominated either by advection, or by local radiation. We also confirm that the part of the accretion flow where advection dominates is in some circumstances limited in size: it does not extend beyond a certain outer limiting radius. New results found in our paper concern the location of the limiting radius and properties of the flow near to it. In particular, we find that beyond the limiting radius, the advective dominated solutions match on to Shapiro, Lightman & Eardley (SLE) discs through a smooth transition region. Therefore, the full global solutions are shock-free and unlimited in size. There is no need for postulating an extra physical effect (e.g. evaporation) for triggering the ADAF-SLE transition. It occurs due to standard accretion processes described by the classic slim disc equations.
Nonlinear time-dependent calculations are being carried out in order to study the evolution of vertically-integrated models of non-selfgravitating, transonic accretion discs around black holes. In this paper we present results from a new calculation for a high-alpha model similar to one studied previously by Honma, Matsumoto and Kato who found evidence for limit-cycle behaviour connected with thermal instability. Our results are in substantial agreement with theirs but, in our calculation, the disc material does not always remain completely optically thick and we include a suitable treatment for this. We followed the evolution for several cycles and determined the period of the cycle as being about 780 seconds. Advective cooling is dominant in the region just behind the outward-moving peak of surface density. The behaviour of this model is significantly different from what we saw earlier for low-alpha models (which we discussed in a previous paper) and we contrast and compare the two situations.
(Abridged) We analyse the stability and evolution of power-law accretion disc models. These have midplane densities that follow radial power-laws, and have either temperature or entropy distributions that are power-law functions of cylindrical radius . We employ two different hydrodynamic codes to perform 2D-axisymmetric and 3D simulations that examine the long-term evolution of the disc models as a function of the power-law indices of the temperature or entropy, the thermal relaxation time of the fluid, and the viscosity. We present a stability analysis of the problem that we use to interpret the simulation results. We find that disc models whose temperature or entropy profiles cause the equilibrium angular velocity to vary with height are unstable to the growth of modes with wavenumber ratios |k_R/k_Z| >> 1 when the thermodynamic response of the fluid is isothermal, or the thermal evolution time is comparable to or shorter than the local dynamical time scale. These discs are subject to the Goldreich-Schubert-Fricke (GSF) or `vertical shear linear instability. Development of the instability involves excitation of vertical breathing and corrugation modes in the disc, with the corrugation modes in particular being a feature of the nonlinear saturated state. Instability operates when the dimensionless disc kinematic viscosity nu < 10^{-6} (Reynolds numbers Re>H c_s/nu > 2500). In 3D the instability generates a quasi-turbulent flow, and the Reynolds stress produces a fluctuating effective viscosity coefficient whose mean value reaches alpha ~ 6 x 10^{-4} by the end of the simulation. The vertical shear instability in disc models which include realistic thermal physics has yet to be examined. Should it occur, however, our results suggest that it will have significant consequences for their internal dynamics, transport properties, and observational appearance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا