ﻻ يوجد ملخص باللغة العربية
Since 1995, astronomers have discovered planets with masses comparable to that of Jupiter (318 times Earths mass) in orbit around approximately 60 stars. Although unseen directly, the presence of these planets is inferred by the small reflex motions that they gravitationally induce on the star they orbit; these result in small periodic wavelength shifts in the stellar spectrum. Since this method favors the detection of massive objects orbiting in close proximity to the star, the question of whether these systems also contain analogs of the smaller constituents of our Solar System has remained unanswered. Using an alternative approach, we report here observations of an aging carbon-star, IRC+10216, that reveal the presence of circumstellar water vapor, a molecule not expected in measurable abundances around such a star and thus a distinctive signature of an orbiting cometary system. The only plausible explanation for this water vapor is that the recent evolution of IRC+10216 - which is accompanied by a prodigious increase in its luminosity - is now causing the vaporization of a collection of orbiting icy bodies, a process first considered in a previous theoretical study.
We have modeled the emission of H2O rotational lines from the extreme C-rich star IRC+10216. Our treatment of the excitation of H2O emissions takes into account the excitation of H2O both through collisions, and through the pumping of the nu2 and nu3
We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (HI) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightn
H13CN J=8-7 sub-millimetre line emission produced in the circumstellar envelope around the extreme carbon star IRC+10216 has been imaged at sub-arcsecond angular resolution using the SMA. Supplemented by a detailed excitation analysis the average fra
We describe Very Large Array observations of the extreme carbon star IRC+10216 at 8.4, 14.9, and 22.5 GHz made over a two year period. We find possible variability correlated with the infrared phase and a cm- to sub-millimeter wavelength spectral ind
The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used t