ترغب بنشر مسار تعليمي؟ اضغط هنا

The Highest Energy Emission Detected by EGRET from Blazars

63   0   0.0 ( 0 )
 نشر من قبل Brenda L. Dingus
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Published EGRET spectra from blazars extend only to 10 GeV, yet EGRET has detected approximately 2000 gamma-rays above 10 GeV of which about half are at high Galactic latitude. We report a search of these high-energy gamma-rays for associations with the EGRET and TeV detected blazars. Because the point spread function of EGRET improves with energy, only ~2 gamma-rays are expected to be positionally coincident with the 80 blazars searched, yet 23 gamma-rays were observed. This collection of > 10 GeV sources should be of particular interest due to the improved sensitivity and lower energy thresholds of ground-based TeV observatories. One of the blazars, RGB0509+056, has the highest energy gamma-rays detected by EGRET from any blazar with 2 > 40 GeV, and is a BL Lac type blazar with unknown redshift.

قيم البحث

اقرأ أيضاً

Fermi has detected over 200 pulsars above 100 MeV. In a previous work, using 3 years of LAT data (1FHL catalog) we reported that 28 of these pulsars show emission above 10 GeV; only three of these, however, were millisecond pulsars (MSPs). The recent ly-released Third Catalog of Hard Fermi-LAT Sources (3FHL) contains over 1500 sources showing emission above 10 GeV, 17 of which are associated with gamma-ray MSPs. Using three times as much data as in our previous study (1FHL), we report on a systematic analysis of these pulsars to determine the highest energy (pulsed) emission fromMSPs and discuss the best possible candidates for follow-up observations with ground-based TeV instruments (H.E.S.S., MAGIC, VERITAS, and the upcoming CTA).
122 - V. Beckmann , C. Ricci , S. Soldi 2009
Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of these sources allowed significant spectral extraction. They show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars are also visible in the first 16 months of the Fermi/LAT data, thus allowing to constrain the inverse Compton branch in these cases. Among others, we analyse the LAT data of four blazars which were not included in the Fermi LAT Bright AGN Sample based on the first 3 months of the mission: QSO B0836+710, H 1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during bright outbursts, as already observed simultaneously by INTEGRAL and Fermi (e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to several hundred keV. We present the spectral analysis of INTEGRAL and Fermi data and demonstrate the potential of INTEGRAL observations of Fermi detected blazars in outburst by analysing the combined data set of the persistent radio galaxy Cen A.
The bright long gamma-ray burst GRB 141207A was observed by the {it Fermi Gamma-ray Space Telescope} and detected by both instruments onboard. The observations show that the spectrum in the prompt phase is not well described by the canonical empirica l Band function alone, and that an additional power-law component is needed. In the early phase of the prompt emission, a modified blackbody with a hard low-energy photon index ($alpha$ = +0.2 -- +0.4) is detected, which suggests a photospheric origin. In a finely time-resolved analysis, the spectra are also well fitted by the modified blackbody combined with a power-law function. We discuss the physical parameters of the photosphere such as the bulk Lorentz factor of the relativistic flow and the radius. We also discuss the physical origin of the extra power-law component observed during the prompt phase in the context of different models such as leptonic and hadronic scenarios in the internal shock regime and synchrotron emission in the external forward shock. In the afterglow phase, the temporal and spectral behaviors of the temporally extended high-energy emission and the fading X-ray emission detected by XRT on-board {it Swift} are consistent with synchrotron emission in a radiative external forward shock.
It is possible that ultra-high energy cosmic rays (UHECRs) are generated by active galactic nuclei (AGNs), but there is currently no conclusive evidence for this hypothesis. Several reports of correlations between the arrival directions of UHECRs and the positions of nearby AGNs have been made, the strongest detection coming from a sample of 27 UHECRs detected by the Pierre Auger Observatory (PAO). However, the PAO results were based on a statistical methodology that not only ignored some relevant information (most obviously the UHECR arrival energies but also some of the information in the arrival directions) but also involved some problematic fine-tuning of the correlation parameters. Here we present a fully Bayesian analysis of the PAO data (collected before 2007 September), which makes use of more of the available information, and find that a fraction F_AGN = 0.15^(+0.10)_(-0.07) of the UHECRs originate from known AGNs in the Veron-Cetty & Veron (VCV) catalogue. The hypothesis that all the UHECRs come from VCV AGNs is ruled out, although there remains a small possibility that the PAO-AGN correlation is coincidental (F_AGN = 0.15 is 200 times as probable as F_AGN = 0.00).
Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the time scale of their radio flares. In this $Letter$, we use multiwavelength data and Doppler factors reported in the literatures for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions, and investigate the correlations among observed and intrinsic data. Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between $gamma$-ray luminosity and the lower energy ones. For flaring blazars detected by Fermi, we conclude that (1) Observed emissions are strongly beamed; (2) The anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) Intrinsic $gamma$-ray luminosity is strongly correlated with other intrinsic luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا