ترغب بنشر مسار تعليمي؟ اضغط هنا

One year of Galileo dust data from the Jovian system: 1996

95   0   0.0 ( 0 )
 نشر من قبل Harald Krueger
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust detector system onboard Galileo records dust impacts in circumjovian space since the spacecraft has been injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i. e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileos interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiters innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded $rm 100 min^{-1}$. A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kruger et al., Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains have been detected thoughout the Jovian system and especially in the region between the Galilean moons.



قيم البحث

اقرأ أيضاً

The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument fo r the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiters innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiters magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiters gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.
247 - H. Kruger , E. Grun , M. Landgraf 2001
The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($ i = 79^{circ}$, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and crossed the eclip tic plane at aphelion in May 1998. In this four-year period 218 dust impacts were recorded with the dust detector on board. We publish and analyse the complete data set of both raw and reduced data for particles with masses $rm 10^{-16} g$ to $rm 10^{-8}$ g. Together with 1477 dust impacts recorded between launch of Ulysses and the end of 1995 published earlier cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with the Ulysses sensor between October 1990 and December 1999 is now available. The impact rate measured between 1996 and 1999 was relatively constant with about 0.2 impacts per day. The impact direction of the majority of the impacts is compatible with particles of interstellar origin, the rest are most likely interplanetary particles. The observed impact rate is compared with a model for the flux of interstellar dust particles. The flux of particles several micrometers in size is compared with the measurements of the dust instruments on board Pioneer 10 and Pioneer 11 beyond 3 AU (Humes 1980, JGR, 85, 5841--5852, 1980). Between 3 and 5 AU, Pioneer results predict that Ulysses should have seen five times more ($rm sim 10 mu m$ sized) particles than actually detected.
Between Jan 1993 and Dec 1995 the Galileo spacecraft traversed interplanetary space between Earth and Jupiter and arrived at Jupiter on 7 Dec 1995. The dust instrument onboard was operating during most of the time. A relatively constant impact rate o f interplanetary and interstellar (big) particles of 0.4 impacts per day was detected over the whole three-year time span. In the outer solar system (outside about 2.6 AU) they are mostly of interstellar origin, whereas in the inner solar system they are mostly interplanetary particles. Within about 1.7 AU from Jupiter intense streams of small dust particles were detected with impact rates of up to 20,000 per day whose impact directions are compatible with a Jovian origin. Two different populations of dust particles were detected in the Jovian magnetosphere: small stream particles during Galileos approach to the planet and big particles concentrated closer to Jupiter between the Galilean satellites. There is strong evidence that the dust stream particles are orders of magnitude smaller in mass and faster than the instruments calibration, whereas the calibration is valid for the big particles. Because the data transmission rate was very low, the complete data set for only a small fraction (2525) of all detected particles could be transmitted to Earth; the other particles were only counted. Together with the 358 particles published earlier, information about 2883 particles detected by the dust instrument during Galileos six years journey to Jupiter is now available.
Jupiter was discovered to be a source of high speed dust particles by the Ulysses spacecraft in 1992. These dust particles originate from the volcanic plumes on Io. They collect electrostatic charges from the plasma environment, gain energy from the co-rotating electric field of the magnetosphere, and leave Jupiter with escape speeds over $rm 200 km s^{-1}$. The dust streams were also observed by the Galileo and Cassini spacecraft. While Ulysses and Cassini only had a single encounter with Jupiter, Galileo has continuously monitored the dust streams in the Jovian magnetosphere since 1996. The observed dust fluxes exhibit large orbit-to-orbit variability due to both systematic and stochastic changes. By combining the entire data set, the variability due to stochatic processes can be approximately removed and a strong variation with Jovian local time is found. This result is consistent with theoretical expectations and confirms that the majority of the Jovian dust stream particles originate from Io rather than other potential sources.
During its late orbital mission at Jupiter the Galileo spacecraft made two passages through the giant planets gossamer ring system. The impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth. Detected particle sizes range from about 0.2 to 5 micron, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al. 2008). The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are about 5 micron in radius, in agreement with imaging results. The measurements indicate a large drop in particle flux immediately interior to Thebes orbit and some detected particles seem to be on highly-tilted orbits with inclinations up to 20 deg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا