ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for gamma-rays above 10 TeV from Markarian 421 in a high state with the CANGAROO-II telescope

70   0   0.0 ( 0 )
 نشر من قبل Kimihiro Okumura
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A preliminary result from Markarian 421 observations in the energy region above 10 TeV with the CANGAROO-II 10 m telescope is presented. In January 2001, the HEGRA group reported that Markarian 421 had become very active, with flux levels up to 4 times that of the Crab Nebula. As a result, we observed Mkn 421 during six nights from January 24th to February 1st, and four nights from March 1st to 4th. Observations were carried out using the very large zenith angle technique ($sim$70 degree) and the energy threshold is estimated from Monte Carlo simulations to be around 10 TeV. We have detected gamma-ray emission in this energy range.



قيم البحث

اقرأ أيضاً

We have observed Markarian 421 in January and March 2001 with the CANGAROO-II imaging Cherenkov telescope during an extraordinarily high state at TeV energies. From 14 hours observations at very large zenith angles, $sim70^circ$, a signal of 298 $pm$ 52 gamma-ray--like events (5.7 $sigma$) was detected at $E>10$ TeV, where a higher sensitivity is achieved than those of usual observations near the zenith, owing to a greatly increased collecting area. Under the assumption of an intrinsic power-law spectrum, we derived a differential energy spectrum $dN/dE = (3.3 pm 0.9_{stat.} pm 0.3_{syst.})times10^{-13} (E/10 {Te V})^{-(4.0 ^{+0.9}_{-0.6}_{stat.} pm 0.3_{syst.})}$ ph./cm$^2$/sec/TeV, which is steeper than those previously measured around 1 TeV, and supports the evidence for a cutoff in the spectrum of Markarian 421. However, the 4 $sigma$ excess at energies greater than 20 TeV in our data favors a cutoff energy of $sim$8 TeV, at the upper end of the range previously reported from measurements at TeV energies.
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and w est. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
Observations of the PSR B1259-63/SS2883 binary system using the CANGAROO-II Cherenkov telescope are reported. This nearby binary consists of a 48msec radio pulsar in a highly eccentric orbit around a Be star, and offers a unique laboratory to investi gate the interactions between the outflows of the pulsar and Be star at various distances. It has been pointed out that the relativistic pulsar wind and the dense mass outflow of the Be star may result in the emission of gamma rays up to TeV energies. We have observed the binary in 2000 and 2001, 47 and 157 days after the October 2000 periastron. Upper limits at the 0.13--0.54 Crab level are obtained. A new model calculation for high-energy gamma-ray emission from the Be star outflow is introduced and the estimated gamma-ray flux considering Bremsstrahlung, inverse Compton scattering, and the decay of neutral pions produced in proton-proton interactions, is found to be comparable to the upper limits of these observations. Comparing our results with these model calculations, the mass-outflow parameters of the Be star are constrained.
Because accretion and merger shocks in clusters of galaxies may accelerate particles to high energies, clusters are candidate sites for the origin of ultra-high-energy (UHE) cosmic-rays. A prediction was presented for gamma-ray emission from a cluste r of galaxies at a detectable level with the current generation of imaging atmospheric Cherenkov telescopes. The gamma-ray emission was produced via inverse Compton upscattering of cosmic microwave background (CMB) photons by electron-positron pairs generated by collisions of UHE cosmic rays in the cluster. We observed two clusters of galaxies, Abell 3667 and Abell 4038, searching for very-high-energy gamma-ray emission with the CANGAROO-III atmospheric Cherenkov telescope system in 2006. The analysis showed no significant excess around these clusters, yielding upper limits on the gamma-ray emission. From a comparison of the upper limit for the north-west radio relic region of Abell 3667 with a model prediction, we derive a lower limit for the magnetic field of the region of ~0.1 micro G. This shows the potential of gamma-ray observations in studies of the cluster environment. We also discuss the flux upper limit from cluster center regions using a model of gamma-ray emission from neutral pions produced in hadronic collisions of cosmic-ray protons with the intra-cluster medium (ICM). The derived upper limit of the cosmic-ray energy density within this framework is an order of magnitude higher than that of our Galaxy.
168 - V. A. Acciari , T. Arlen , T. Aune 2013
The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with the Whipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlatio n between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with the Whipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446$pm$0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا