ترغب بنشر مسار تعليمي؟ اضغط هنا

Near Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K=24.5

169   0   0.0 ( 0 )
 نشر من قبل Tomonori Totani
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Totani




اسأل ChatGPT حول البحث

Galaxy counts in the K band, (J-K)-colors, and apparent size distributions of faint galaxies in the Subaru Deep Field (SDF) down to K~24.5 were studied in detail. Special attention has been paid to take into account various selection effects including the cosmological dimming of surface brightness, to avoid any systematic bias which may be the origin of controversy in previously published results. We also tried to be very careful about systematic model uncertainties; we present a comprehensive surveys of these systematic uncertainties and dependence on various parameters. We found that the pure luminosity evolution (PLE) model is well consistent with all the SDF data down to K~22.5, without any evidence for number or size evolution in a low-density, Lambda-dominated flat universe which is now favored by various cosmological observations. If the popular Lambda-dominated universe is taken for granted, our result then gives a strong constraint on the number evolution of giant elliptical or early-type galaxies to z~1-2 which must be met by any models in the hierarchically clustering universe, since such galaxies are the dominant population in this magnitude range (K<~22.5). In the fainter magnitude range of K>~22.5, we found a slight excess of observed counts over the prediction of the PLE model when elliptical galaxies are treated as a single population. We suggest that this discrepancy reflects some number evolution of dwarf galaxies and/or the distinct populations of giant and dwarf elliptical galaxies which have been known for local elliptical galaxies.



قيم البحث

اقرأ أيضاً

We discuss near-infrared star counts at the Galactic pole with a view to guiding the NGST and ground-based NIR cameras. Star counts from deep K-band images from the CFHT are presented, and compared with results from the 2MASS survey and some Galaxy m odels. With appropriate corrections for detector artifacts and galaxies, the data agree with the models down to K~18, but indicate a larger population of fainter red stars. There is also a significant population of compact galaxies that extend to the observational faint limit of K=20.5. Recent Galaxy models agree well down to K$sim$19, but diverge at fainter magnitudes.
Deep near-infrared images of a blank 2x2 section of sky near the Galactic north pole taken by Subaru Telescope are presented. The total integration times of the J and K bands are 12.1 hours and 9.7 hours, resulting in 5-sigma limiting magnitudes of 2 5.1 and 23.5 mag, respectively. The numbers of sources within these limiting magnitudes found with an automated detection procedure are 385 in the J band and 350 in K. Based on photometric measurements of these sources, we present number count vs. magnitude relations, color vs. magnitude diagrams, size vs. color relationships, etc. The slope of the galaxy number count plotted against the AB magnitude scale is about 0.23 in the 22 to 26 AB magnitude range of both bands. The spatial number density of galaxies as well as the slopes in the faint-end region given by the Subaru Deep Field (SDF) survey is consistent with those given by HST-NICMOS surveys as expressed on the AB magnitude diagram. Several sources having very large J-K color are found including a few K objects without detection at J. In addition, a number of faint Galactic stars are also detected, most of which are assigned to M-subdwarfs, together with a few brown dwarf candidates.
191 - T. Totani 2001
Deep optical and near-infrared galaxy counts are utilized to estimate the extragalactic background light (EBL) coming from normal galactic light in the universe. Although the slope of number-magnitude relation of the faintest counts is flat enough fo r the count integration to converge, considerable fraction of EBL from galaxies could still have been missed in deep galaxy surveys because of various selection effects including the cosmological dimming of surface brightness of galaxies. Here we give an estimate of EBL from galaxy counts, in which these selection effects are quantitatively taken into account for the first time, based on reasonable models of galaxy evolution which are consistent with all available data of galaxy counts, size, and redshift distributions. We show that the EBL from galaxies is best resolved into discrete galaxies in the near-infrared bands (J, K) by using the latest data of the Subaru Deep Field; more than 80-90% of EBL from galaxies has been resolved in these bands. Our result indicates that the contribution by missing galaxies cannot account for the discrepancy between the count integration and recent tentative detections of diffuse EBL in the K-band (2.2 micron), and there may be a very diffuse component of EBL which has left no imprints in known galaxy populations.
52 - Ana Campos , Tom Shanks 1995
In this paper we analyse the deep number counts problem, taking account of new observational and theoretical developments. First we show that the new Bruzual and Charlot (1993) models allow a new class of spiral dominated luminosity evolution (LE) mo del where significant amounts of the luminosity evolution needed to fit faint count data are due to spiral rather than early-type galaxies. Second we show that the inclusion of dust may be a vital ingredient for obtaining fits with any LE model. Third we compare the quality of fit of both the spiral and early-type LE models, including dust, for a wide variety of observational data. We find that parameters can be found for both LE models which allow a good fit to all data with the exception of the faintest B>25 counts in the case of q0=0.5 cosmologies, where some luminosity dependent evolution may be needed (see also Metcalfe et al 1995). Otherwise both these classes of LE model, with the inclusion of dust, provide an excellent foundation for understanding the B<25 galaxy counts and galaxy counts and redshift distributions in a variety of other wavebands.
Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. Faint galaxies in the Subaru Deep Field (SDF) and the Hubble Deep Field (HDF) are compared with our model g alaxies. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models, the standard cold dark matter (CDM) universe, a flat lambda-CDM, and an open CDM. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-z galaxies, and from the absorption of visible light by internal dust and intergalactic HI clouds. As was found in our previous work, in which the UV/optical HDF galaxies were compared with our model galaxies, we find that our SAM reproduces counts of near-IR SDF galaxies in low-density models, and that the standard CDM universe is not preferred, as suggested by other recent studies. Moreover, we find that simple prescriptions for (1) the timescale of star formation being proportional to the dynamical time scale of the formation of galactic disks, (2) the size of galactic disks being rotationally supported with the same specific angular momentum as that of surrounding dark halo, and (3) the dust optical depth being proportional to the metallicity of cold gas, cannot completely explain all of observed data. Improved prescriptions incorporating mild z-dependence for those are suggested from our SAM analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا