ترغب بنشر مسار تعليمي؟ اضغط هنا

Long periodicity of Blasers with RXTE ASM

130   0   0.0 ( 0 )
 نشر من قبل Satoko Osone
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for long periodicity in ten X-ray selected Blasers with RXTE ASM 4.6 years data. We found about 10-100 day possible periodicities for three TeV gamma ray Blasers, Mkn 421, Mkn 501 and PKS 2155-304.



قيم البحث

اقرأ أيضاً

Using the archival RXTE/ASM and SWIFT/BAT observations, the new orbital phases of Type I outbursts of EXO 2030+375 are estimated. A possible correlation between the Type II outburst and optical brightness variations is investigated. In order to estim ate the phases of Type I outbursts, we fitted Gaussian profiles to the RXTE/ASM and SWIFT/BAT light curves. The time corresponding to the maximum value of the profiles is treated as the arrival time of Type I outburst. We used differential magnitudes in the time-series analysis of the optical light curve. MIDAS and its suitable packages were used to reduce and analyze the spectra. Prior to the Type II outburst, orbital phases of Type I outbursts were delayed for 6 days after the periastron passage, which is consistent with findings of Wilson et al., (2002, 2005). After the giant Type II outburst, the phase of Type I outbursts underwent a sudden shift of 13 days after the periastron passage. The amplitudes of Type I outbursts were increased between MJD 52500 and 53500. These amplitudes then decreased for 10 orbital cycles until the Type II outburst was triggered. If the change of outburst amplitudes correlated with the mass accretion, then during the decrease of these amplitudes mass should be deposited in a disk around neutron star temporarily. The release of this stored mass may ignite the Type II outburst. We report that the optical light curve became fainter by 0.4 mag during the decrease of amplitude of the Type I outbursts. The observed H$alpha$ profiles and their equivalent widths during the decay and after the giant outburst are consistent with previous observations of the system.
To probe further the possible nature of the unidentified source IGR J17098-3628, we have carried out a detailed analysis of its long-term time variability as monitored by RXTE/ASM, and of its hard X-ray properties as observed by INTEGRAL. INTEGRAL ha s monitored this sky region over years and significantly detected IGR J17098-3628 only when the source was in this dubbed active state. In particular, at $ge$ 20 keV, IBIS/ISGRI caught an outburst in March 2005, lasting for $sim$5 days with detection significance of 73$sigma$ (20-40 keV) and with the emission at $< $200 keV. The ASM observations reveal that the soft X-ray lightcurve shows a similar outburst to that detected by INTEGRAL, however the peak of the soft X-ray lightcurve either lags, or is preceded by, the hard X-ray ($>$20 keV) outburst by $sim$2 days. This resembles the behavior of X-ray novae like XN 1124-683, hence it further suggests a LMXB nature for IGR J17098-3628. While the quality of the ASM data prevents us from drawing any definite conclusions, these discoveries are important clues that, coupled with future observations, will help to resolve the as yet unknown nature of IGR J17098-3628.
We have analyzed the long pointed observations of the Z sources in the Rossi X-Ray Timing Explorer (RXTE) public archive to study the high energy emission in those sources. Our analysis is concentrated on the High Energy X--Ray Timing Experiment (HEX TE) waveband, since we are primarily interested in studying the hard X-ray (i.e., E > 20 keV) production in those sources. We give here the preliminary results of this ongoing study. We have found no hard X-ray tails (besides Sco X-1) in our database from any of the Z sources, i.e., GX 349+2 (< 7.9 x 10^-5 photons cm^-2 s^-1, 3 sigma, 50-150 keV), Cyg X-2 (< 8.4 x 10^-5 photons cm^-2 s^-1, 3 sigma, 50-150 keV), GX 17+2 (< 4.2 x 10^-5 photons cm^-2 s^-1, 3 sigma, 50-150 keV), GX 5-1 (< 2.1 x 10^-5 photons cm^-2 s^-1, 3 sigma, 50-150 keV), and Gx 340+0 (< 6.0 x 10^-5 photons cm^-2 s^-1, 3 sigma, 50-150 keV). From the point of view of HEXTE/RXTE observations shown here, the production of hard X-ray tails in Z sources is a process triggered when special conditions are fulfilled. One of these conditions, as derived from our analysis, is a threshold of ~ 4 x 10^36 erg s^-1 for the luminosity of the sources thermal component.
We study several Galactic black hole candidates using long-time RXTE/ASM X-ray data to search for telltale signatures of differences in viscous timescales in the two components used in the Two-Component Advective Flow (TCAF) paradigm. In high-mass X- ray binaries (HMXBs) mainly winds are accreted. This nearly inviscid and dominant sub-Keplerian flow falls almost freely towards the black hole. A standard Keplerian disc can form out of this sub-Keplerian matter in presence of a significant viscosity and could be small in size. However, in low-mass X-ray binaries (LMXBs), highly viscous and larger Keplerian accretion disc is expected to form inside the sub-Keplerian disc due to the Roche-lobe overflow. Due to two viscous timescales in these two components, it is expected to have a larger lag between the times-of-arrival of these components in LMXBs than that in HMXBs. Direct cross-correlation between the photon fluxes will not reveal this lag/delay since they lack linear dependence; however, they are coupled through the viscous processes which bring in both matter. To quantify the aforesaid time lag, we introduce an index ({Theta}), which is a proxy of the usual photon index ({Gamma}). Thus, when {Theta}, being dynamically responsive to both fluxes, is considered as a reference, the arrival time lag between the two fluxes in LMXBs is found to be much larger than that in HMXBs. Our result establishes the presence of two dynamical components in accretion and shows that the Keplerian disc size indeed is smaller in HMXBs as compared to that in LMXBs.
265 - I. M. McHardy 2003
We present a comprehensive examination of the X-ray variability of the narrow line Seyfert 1 (NLS1) galaxy NGC4051. We combine over 6.5 years of frequent monitoring observations by RXTE with a >100ks continuous observation by XMM-Newton and so presen t a powerspectral density (PSD) covering an unprecedented frequency range of over 6.5 decades from <1e-8 to >1e-2 Hz. The combined RXTE and XMM-Newton PSD is a very good match to the PSD of the galactic black hole binary system (GBH) Cyg X-1 when in a `high, rather than `low, state providing the first definite confirmation of an AGN in a `high state. We find a break in the PSD at a frequency u_{B}=8e-4 Hz. If u_{B} scales linearly with mass then, assuming a black hole (BH) mass of 10 M_solar for Cyg X-1, we imply a BH mass of 3e-5 M_solar in NGC4051, which is consistent with the recently reported reverberation mapped value. Hence NGC4051 is emitting at sim30% L_{Edd}. We note that the higher energy photons lag the lower energy ones and that the lag is greater for variations of longer Fourier period and increases with the energy separation of the bands. Variations in different wavebands are very coherent at long Fourier periods but the coherence decreases at shorter periods and as the energy separation between bands increases. This behaviour is similar to that of GBHs and suggests a radial distribution of frequencies and photon energies with higher energies and higher frequencies being associated with smaller radii [ABRIDGED].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا