ترغب بنشر مسار تعليمي؟ اضغط هنا

On the nature of X-ray absorption in Seyfert 2 galaxies

92   0   0.0 ( 0 )
 نشر من قبل Matteo Guainazzi
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the correlation among X-ray absorption, optical reddening and nuclear dust morphology in Seyfert 2 galaxies. Two main conclusions emerge: a) the Balmer decrement and the amount of X-ray absorption are anticorrelated on a wide range of column density: 10^{21} < N_H < 10^{24} atoms/cm/cm. The correlation does no longer apply to Compton-thick objects (N_H < 10^{24} atoms/cm/cm), although they span a comparable range in Balmer decrement; b) Compton-thin Seyfert 2s seem to prefer nuclear environments, which are rich of dust on scales of the hundreds parsecs. On the other hand, Compton-thick Seyferts exhibit indifferently ``dust-poor and ``dust-rich environments. These results support an extension of the Seyfert unification scenario (as recently proposed by Matt, 2000), where Compton-thick Seyfert 2s are observed through compact ``torii, whereas Compton-thin ones are obscured by dust on much larger scales



قيم البحث

اقرأ أيضاً

We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5-10 keV spectrum is rather complex and consists of several components: (1) a hard X-ray power law heavily absorbed by a column density of about 3 10^23 cm^-2, (2) a n arrow Fe Kalpha line at 6.4 keV, (3) soft continuum emission well above the extrapolation of the absorbed hard power law, (4) a narrow emission line at about 0.9 keV. The line energy, consistent with highly ionized Neon (NeIX), may indicate that the soft X-ray emission derives from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.
The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. But there are many borderline cases and also numerous examples where the optical and X-ray classifications appear to be in conf lict. In this article we re-visit the relation between optical obscuration and X-ray absorption in AGNs. We make use of our dust color method (Burtscher et al. 2015) to derive the optical obscuration A_V and consistently estimated X-ray absorbing columns using 0.3--150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column N_H and derive the Seyfert sub-classes of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log L_X / (erg/s) ~ 41.5 - 43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column N_H = 10^22.3 / cm^2 to be consistent with the optical classification. We find that N_H is related to A_V and that the N_H/A_V ratio is approximately Galactic or higher in all sources, as indicated previously. But in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic N_H/A_V can simply be explained by dust-free neutral gas within the broad line region in some sources, that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust color method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.
118 - Xinwen Shu 2012
We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.
Soft X-ray spectroscopy of Seyfert 2 galaxies offers perhaps the best method to probe the possible connection between AGN activity and star formation. Obscuration of powerful radiation from the inferred nucleus allows for detailed study of circumnucl ear emission regions. And soft X-ray spectroscopy of these regions allows for robust discrimination between warm gas radiatively driven by the AGN and hot collisionally-driven gas possibly associated with star formation. A simple model of a (bi-)cone of gas photoionized and photoexcited by a nuclear power-law continuum is sufficient to explain the soft X-ray spectra of all Seyfert 2 galaxies so far observed by the XMM-Newton and Chandra satellites. An upper limit of around 10 percent to an additional hot, collisionally-driven gas contribution to the soft X-ray regime appears to hold for five different Seyfert 2 galaxies, placing interesting constraints on circumnuclear star formation.
We present an X-ray spectral analysis of a sample of 8 bona-fide Seyfert 2 galaxies, selected on the basis of their high $[OIII]lambda5007$ flux, from the Ho et al. (1997) spectroscopic sample of nearby galaxies. We find that, in general, the X-ray s pectra of our Seyfert 2 galaxies are complex, with some our objects having spectra different from the typical spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC3147 and NGC4698) show no evidence for intrinsic absorption. We suggest this is due to the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our asca data alone cannot discriminate whether low absorption objects are Compton-thick AGN with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC4698. Its spectrum could be explained by either a dusty warm absorber or a lack of broad line clouds so that its appearance as a Seyfert 2 is intrinsic and not due to absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا