ﻻ يوجد ملخص باللغة العربية
The thermodynamic behaviour of self-gravitating $N$-body systems has been worked out by borrowing a standard method from Molecular Dynamics: the time averages of suitable quantities are numerically computed along the dynamical trajectories to yield thermodynamic observables. The link between dynamics and thermodynamics is made in the microcanonical ensemble of statistical mechanics. The dynamics of self-gravitating $N$-body systems has been computed using two different kinds of regularization of the newtonian interaction: the usual softening and a truncation of the Fourier expansion series of the two-body potential. $N$ particles of equal masses are constrained in a finite three dimensional volume. Through the computation of basic thermodynamic observables and of the equation of state in the $P - V$ plane, new evidence is given of the existence of a second order phase transition from a homogeneous phase to a clustered phase. This corresponds to a crossover from a polytrope of index $n=3$, i.e. $p=K V^{-4/3}$, to a perfect gas law $p=K V^{-1}$, as is shown by the isoenergetic curves on the $P - V$ plane. The dynamical-microcanonical averages are compared to their corresponding canonical ensemble averages, obtained through standard Monte Carlo computations. A major disagreement is found, because the canonical ensemble seems to have completely lost any information about the phase transition. The microcanonical ensemble appears as the only reliable statistical framework to tackle self-gravitating systems. Finally, our results -- obtained in a ``microscopic framework -- are compared with some existing theoretical predictions -- obtained in a ``macroscopic (thermodynamic) framework: qualitative and quantitative agreement is found, with an interesting exception.
We study the statistical mechanics of binary systems under gravitational interaction of the Modified Newtonian Dynamics (MOND) in three-dimensional space. Considering the binary systems, in the microcanonical and canonical ensembles, we show that in
We revisit the r^{o}le of discreteness and chaos in the dynamics of self-gravitating systems by means of $N$-body simulations with active and frozen potentials, starting from spherically symmetric stationary states and considering the orbits of singl
This work is devoted to the thermodynamics of gravitational clustering, a collective phenomenon with a great relevance in the $N$-body cosmological problem. We study a classical self-gravitating gas of identical non-relativistic particles defined on
The long timescale evolution of a self-gravitating system is generically driven by two-body encounters. In many cases, the motion of the particles is primarily governed by the mean field potential. When this potential is integrable, particles move on
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose