ﻻ يوجد ملخص باللغة العربية
We present the detection of an intermediate-mass pre-main-sequence population embedded in the nebular filaments surrounding the 30 Doradus region in the Large Magellanic Cloud (LMC) using HST/NICMOS. In addition to four previously known luminous Class I infrared ``protostars, the NICMOS data reveal 20 new sources with intrinsic infrared excess similar to Galactic pre-main sequence stars. Based on their infrared brightness, these objects can be identified as the LMC equivalent of Galactic pre-main sequence stars. The faintest LMC Young Stellar Objects in the sample have colors similar to T Tauri and have about the same brightness as T Tauri if placed at the distance of the LMC. We find no evidence for a lower-mass cut-off in the initial mass function. Instead, the whole spectrum of stellar masses from pre-main sequence stars with ~1.5Mo to massive O stars still embedded in dense knots appears to be present in the nebular filaments. The majority of the young stellar objects can be found to the north of the central starburst cluster R136. This region is very likely evolving into an OB association.
As a part of an ongoing effort to characterise the young stellar populations in the Large Magellanic Cloud, we present HST-WFPC2 broad and narrow band imaging of two fields with recent star formation activity in the Tarantula region. A population of
It is now well-known that the surface magnetic fields observed in cool, lower-mass stars on the main sequence (MS) are generated by dynamos operating in their convective envelopes. However, higher-mass stars (above 1.5 Msun) pass their MS lives with
We report on the properties of the low-mass stars that recently formed in the central ~ 2.7x2.7 of 30 Dor including the R136 cluster. Using the photometric catalogue of De Marchi et al. (2011c), based on observations with the Hubble Space Telescope (
We use X-ray and infrared observations to study the properties of three classes of young stars in the Carina Nebula: intermediate-mass (2--8M$_odot$) pre-main sequence stars (IMPS; i.e. intermediate-mass T Tauri stars), late-B and A stars on the zero
Context. gamma Doradus (gamma Dor) are late A and F-type stars pulsating with high order gravity modes (g-modes). The existence of different evolutionary phases crossing the gamma Dor instability strip raises the question of the existence of pre-main