ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Keck HIRES spectra of early L-type dwarfs

174   0   0.0 ( 0 )
 نشر من قبل Andreas Schweitzer
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analyses of high resolution and medium resolution spectra of early L dwarfs. We used our latest set of model atmospheres to reproduce and analyze the observed features. We can model the optical flux and the atomic line profiles with the best accuracy to date. The models used to reproduce the observations include dust condensation and dust opacities. Compared to previous studies using older models we find that our dust treatment is much improved. The derived parameters for the objects are well in the expected range for old very low mass objects. This is also supported by the absence of Li in most of the objects. For the objects showing Li we can be almost certain that those are brown dwarfs. However, a spectral analysis in general, and this one in particular can only very roughly determine mass and age.



قيم البحث

اقرأ أيضاً

We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ra tios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.
110 - Malena Rice , John Brewer 2020
To accurately interpret the observed properties of exoplanets, it is necessary to first obtain a detailed understanding of host star properties. However, physical models that analyze stellar properties on a per-star basis can become computationally i ntractable for sufficiently large samples. Furthermore, these models are limited by the wavelength coverage of available spectra. We combine previously derived spectral properties from the Spectroscopic Properties of Cool Stars (SPOCS) catalog (Brewer et al. 2016) with generative modeling using The Cannon to produce a model capable of deriving stellar parameters ($log g$, $T_{mathrm{eff}}$, and $vsin i$) and 15 elemental abundances (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y) for stellar spectra observed with Keck Observatorys High Resolution Echelle Spectrometer (HIRES). We demonstrate the high accuracy and precision of our model, which takes just $sim$3 seconds to classify each star, through cross-validation with pre-labeled spectra from the SPOCS sample. Our trained model, which takes continuum-normalized template spectra as its inputs, is publicly available at https://github.com/malenarice/keckspec. Finally, we interpolate our spectra and employ the same modeling scheme to recover labels for 477 stars using archival stellar spectra obtained prior to Kecks 2004 detector upgrade, demonstrating that our interpolated model can successfully predict stellar labels for different spectrographs that have (1) sufficiently similar systematics and (2) a wavelength range that substantially overlaps with that of the post-2004 HIRES spectra.
Based on high resolution, high signal-to-noise (S/N) ratio spectra from Keck/HIRES, we have determined abundances of 20 elements for 18 Ba candidates. The parameter space of these stars are in the range of 4880 $leq$ $rm{T_{eff}}$ $leq$ 6050 K, 2.56 $leq$ log $g$ $leq$ 4.53 dex and -0.27 $leq$ [Fe/H] $leq$ 0.09 dex. It is found that four of them can be identified as Ba stars with [s/Fe] $>$ 0.25 dex (s: Sr, Y, Zr, Ba, La, Ce and Nd), and three of them are newly discovered, which includes two Ba giants (HD 16178 and HD 22233) and one Ba subgiant (HD 2946). Our results show that the abundances of $alpha$, odd and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, Mn, Ni and Cu) for our program stars are similar to those of the thin disk, while the distribution of [hs/ls] (hs: Ba, La, Ce and Nd, ls: Sr, Y and Zr) ratios of our Ba stars is similar to those of the known Ba objects. None of the four Ba stars show clear enhancement in carbon including the known CH subgiant HD 4395. It is found that three of the Ba stars present clear evidences of hosting stellar or sub-stellar companions from the radial velocity data.
(Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincid ent with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا