ﻻ يوجد ملخص باللغة العربية
In the Chandra Deep Field South 1Msec exposure we have found, at redshift 3.700 +- 0.005, the most distant Type 2 AGN ever detected. It is the source with the hardest X-ray spectrum with redshift z>3. The optical spectrum has no detected continuum emission to a 3sigma detection limit of ~3 10^{-19} ergs/s/cm^2/AA and shows narrow lines of Ly_alpha, CIV, NV, HeII, OVI, [OIII], and CIII]. Their FWHM line widths have a range of ~700-2300 km/s with an average of approximately ~1500 km/s. The emitting gas is metal rich (Z ~2.5-3 Z_solar). In the X-ray spectrum of 130 counts in the 0.5-7 keV band there is evidence for intrinsic absorption with N_H > 10^{24} cm^{-2}. An iron K_alpha line with rest frame energy and equivalent width of ~6.4 keV and ~1 keV, respectively, in agreement with the obscuration scenario, is detected at a 2sigma level. If confirmed by our forthcoming XMM observations this would be the highest redshift detection of FeK_alpha. Depending on the assumed cosmology and the X-ray transfer model, the 2-10 keV rest frame luminosity corrected for absorption is ~10^{45 +- 0.5} ergs/s, which makes our source a classic example of the long sought Type 2 QSOs. From standard population synthesis models, these sources are expected to account for a relevant fraction of the black-hole-powered QSO distribution at high redshift.
We present the XMM-Newton and the optical-VLT spectra along with the optical and the near-infrared photometric data of one of the brightest X-ray (F(2-10 keV)~1e-13 erg/s cm^2) extremely red objects (R-K>=5) discovered so far. The source, XBSJ0216-04
We present a 30 ks XMM-Newton observation of the z = 2.35 Type II radio quiet quasar RX J1343.4+0001. These data provide the first good quality X-ray spectrum for this object. We measured a continuum slope Gamma = 1.85+/-0.10 with only an upper limit
We report the Suzaku/XIS and HXD and Chandra/ACIS-I results on the X-ray spectra of the Phoenix cluster at the redshift $z=0.596$. The spectrum of the intracluster medium (ICM) is well-reproduced with the emissions from a low temperature ($sim3.0$,ke
The interaction of two colliding Alfven wave packets is here described by means of magnetohydrodynamics (MHD) and hybrid kinetic numerical simulations. The MHD evolution revisits the theoretical insights described by Moffatt, Parker, Kraichnan, Chand
There is growing evidence that every galaxy with a considerable spheroidal component hosts a supermassive black hole (SMBH) at its center. Strong correlations between the SMBH and the spheroidal component suggest a physical connection through a coevo