ترغب بنشر مسار تعليمي؟ اضغط هنا

The Measurement of Disk Ellipticity in Nearby Spiral Galaxies

76   0   0.0 ( 0 )
 نشر من قبل Matthew A. Bershady
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the intrinsic disk ellipticity for 7 nearby, nearly face-on spiral galaxies by combining Densepak integral-field spectroscopy with I-band imaging from the WIYN telescope. Initially assuming an axisymmetric model, we determine kinematic inclinations and position angles from H-alpha velocity fields, and photometric axis ratios and position angles from imaging data. We interpret the observed disparities between kinematic and photometric disk parameters in terms of an intrinsic non-zero ellipticity. The mean ellipticity of our sample is 0.05. If the majority of disk galaxies have such intrinsic axis ratios, this would account for roughly 50% of the scatter in the Tully-Fisher relation. This result, in turn, places tighter constraints on other sources of scatter in this relation, the most astrophysically compelling of which is galaxy mass-to-light ratios.

قيم البحث

اقرأ أيضاً

86 - J. Mendez-Abreu 2008
The structural parameters of a magnitude-limited sample of 148 unbarred S0-Sb galaxies were derived to study the correlations between bulge and disk parameters as well as the probability distribution function (PDF) of the intrinsic equatorial ellipti city of bulges. A new algorithm (GASP2D) was used to perform the bidimensional bulge-disk decomposition of the J-band galaxy images extracted from the archive of the 2MASS survey. The PDF of intrinsic ellipticities was derived from the distribution of the observed ellipticities of the bulges and misalignments between the the bulges and disks. About 80% of the observed bulges are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is <B/A>=0.85. There is not significant dependence of their PDF on morphology, light concentration or luminosity. This has to be explained by the different scenarios of bulge formation.
146 - J. Mendez-Abreu 2007
(Abridged) A variety of formation scenarios was proposed to explain the diversity of properties observed in bulges. Studying their intrinsic shape can help in constraining the dominant mechanism at the epochs of their assembly. The structural paramet ers of a magnitude-limited sample of 148 unbarred S0--Sb galaxies were derived in order to study the correlations between bulges and disks as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. It is presented a new fitting algorithm (GASP2D) to perform the two-dimensional photometric decomposition of galaxy surface-brightness distribution. This was assumed to be the sum of the contribution of a bulge and disk component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. Bulge and disk parameters of the sample galaxies were derived from the J-band images which were available in the Two Micron All Sky Survey. The PDF of the equatorial ellipticity of the bulges was derived from the distribution of the observed ellipticities of bulges and misalignments between bulges and disks. Strong correlations between the bulge and disk parameters were found. About 80% of bulges in unbarred lenticular and early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is <B/A> = 0.85. There is not significant dependence of their PDF on morphology, light concentration, and luminosity. The interplay between bulge and disk parameters favors scenarios in which bulges assembled from mergers and/or grew over long times through disk secular evolution. But all these mechanisms have to be tested against the derived distribution of bulge intrinsic ellipticities.
119 - A. Bosma 2016
In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a tilted ring mo del allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.
New deep VLA D array HI observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model HI data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80 degrees; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination; (iv) an exponential flare; and (v) a low surface-density gas ring. The slope of NGC 2683s flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683s maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae, (ii) magneto-rotational instabilities, (iii) ISM stirring by dark matter substructure, or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC 2683.
100 - Himel Ghosh 2008
We are conducting a search for supermassive black holes (SMBHs) with masses below 10^7 M_sun by looking for signs of extremely low-level nuclear activity in nearby galaxies that are not known to be AGNs. Our survey has the following characteristics: (a) X-ray selection using the Chandra X-ray Observatory, since x-rays are a ubiquitous feature of AGNs; (b) Emphasis on late-type spiral and dwarf galaxies, as the galaxies most likely to have low-mass SMBHs; (c) Use of multiwavelength data to verify the source is an AGN; and (d) Use of the highest angular resolution available for observations in x-rays and other bands, to separate nuclear from off-nuclear sources and to minimize contamination by host galaxy light. Here we show the feasibility of this technique to find AGNs by applying it to six nearby, face-on spiral galaxies (NGC 3169, NGC 3184, NGC 4102, NGC 4647, NGC 4713, NGC 5457) for which data already exist in the Chandra archive. All six show nuclear x-ray sources. The data as they exist at present are ambiguous regarding the nature of the nuclear x-ray sources in NGC 4713 and NGC 4647. We conclude, in accord with previous studies, that NGC 3169 and NGC 4102 are almost certainly AGNs. Most interestingly, a strong argument can be made that NGC 3184 and NGC 5457, both of type Scd, host AGNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا