ﻻ يوجد ملخص باللغة العربية
We investigate the weakly non-linear evolution of cosmic gravitational clustering in phase space by looking at the Zeldovich solution in the discrete wavelet transform (DWT) representation. We show that if the initial perturbations are Gaussian, the relation between the evolved DWT mode and the initial perturbations in the weakly non-linear regime is quasi-local. That is, the evolved density perturbations are mainly determined by the initial perturbations localized in the same spatial range. Furthermore, we show that the evolved mode is monotonically related to the initial perturbed mode. Thus large (small) perturbed modes statistically correspond to the large (small) initial perturbed modes. We test this prediction by using QSO Ly$alpha$ absorption samples. The results show that the weakly non-linear features for both the transmitted flux and identified forest lines are quasi-localized. The locality and monotonic properties provide a solid basis for a DWT scale-by-scale Gaussianization reconstruction algorithm proposed by Feng & Fang (Feng & Fang, 2000) for data in the weakly non-linear regime. With the Zeldovich solution, we find also that the major non-Gaussianity caused by the weakly non-linear evolution is local scale-scale correlations. Therefore, to have a precise recovery of the initial Gaussian mass field, it is essential to remove the scale-scale correlations.
We show that the nonlinear evolution of the cosmic gravitational clustering is approximately spatial local in the $x$-$k$ (position-scale) phase space if the initial perturbations are Gaussian. That is, if viewing the mass field with modes in the pha
We present a new approach to describe statistics of the non-linear matter density field that exploits a degeneracy in the impact of different cosmological parameters on the linear matter power spectrum, $P_{rm L}(k)$, when expressed in Mpc units. We
We study the inverse problem of recovery a compactly supported non-linearity in the semilinear wave equation $u_{tt}-Delta u+ alpha(x) |u|^2u=0$, in two and three dimensions. We probe the medium with complex-valued harmonic waves of wavelength $h$ an
We address the question of whether or not assembly bias arises in the absence of highly non-linear effects such as tidal stripping of halos near larger mass concentrations. Therefore, we use a simplified dynamical scheme where these effects are not m
Mechanisms with money are commonly designed under the assumption that agents are quasi-linear, meaning they have linear disutility for spending money. We study the implications when agents with non-linear (specifically, convex) disutility for payment