ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-metallicity stars I. Evolution at constant mass

247   0   0.0 ( 0 )
 نشر من قبل Leo Alberto Girardi
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paola Marigo




اسأل ChatGPT حول البحث

We present extensive evolutionary models of stars with initial zero-metallicity, covering a large range of initial masses (i.e. 0.7 <= M <= 100 Msun). Calculations are carried out at constant mass, with updated input physics, and applying an overshooting scheme to convective boundaries. The nuclear network includes all the important reactions of the p-p chain, CNO-cycle and alpha-captures, and is solved by means of a suitable semi-implicit method. The evolution is followed up to the thermally pulsing AGB in the case of low- and intermediate-mass stars, or to the onset of carbon burning in massive stars. The main evolutionary features of these models are discussed, also in comparison with models of non-zero metallicity. Among several interesting aspects, particular attention has been paid to describe: i) the first synthesis of 12C inside the stars, that may suddenly trigger the CNO-cycle causing particular evolutionary features; ii) the pollution of the stellar surface by the dredge-up events, that are effective only within particular mass ranges; iii) the mass limits which conventionally define the classes of low-, intermediate-, and high-mass stars on the basis of common evolutionary properties, including the upper mass limit for the achievement of super-Eddington luminosities before C-ignition in the high-mass regime; and iv) the expected pulsational properties of zero-metallicity stars. All relevant information referring to the evolutionary tracks and isochrones is made available in computer-readable format at http://pleiadi.pd.astro.it .

قيم البحث

اقرأ أيضاً

128 - P. Marigo 2002
We discuss the evolutionary properties of primordial massive and very massive stars, supposed to have formed from metal-free gas. Stellar models are presented over a large range of initial masses (8 Msun <= Mi <= 1000 Msun), covering the hydrogen- an d helium-burning phases up to the onset of carbon burning. In most cases the evolution is followed at constant mass. To estimate the possible effect of mass loss via stellar winds, recent analytic formalisms for the mass-loss rates are applied to the very massive models (Mi >= 120 Msun).
83 - P. Marigo , 2002
We present evolutionary models of zero-metallicity very massive objects, with initial masses in the range 120 Msun -- 1000 Msun, covering their quiescent evolution up to central carbon ignition. In the attempt of exploring the possible occurrence of mass loss by stellar winds, calculations are carried out with recently-developed formalisms for the mass-loss rates driven by radiation pressure (Kudritzki 2002) and stellar rotation (Maeder & Meynet 2000).The study completes the previous analysis by Marigo et al. (2001) on the constant-mass evolution of primordial stars. Our results indicate that radiation pressure (assuming a minimum metallicity Z = 10^{-4} Zsun)is not an efficient driving force of mass loss, except for very massive stars with M >= 750 Msun. On the other hand, stellar rotation might play a crucial role in triggering powerful stellar winds, once the (Omega-Gamma)-limit is approached. However, this critical condition of intense mass loss can be maintained just for short, as the loss of angular momentum due to mass ejection quickly leads to the spinning down of the star. As by-product to the present work, the wind chemical yields from massive zero-metallicity stars are presented. The helium and metal enrichments, and the resulting Delta(Y)/Delta(Z) ratio are briefly discussed.
Observational evidence suggests that some very massive stars in the local Universe may die as pair-instability supernovae. We present 2D simulations of the pair-instability supernova of a non-zero metallicity star. We find that very little mixing occ urs in this explosion because metals in the stellar envelope drive strong winds that strip the hydrogen envelope from the star prior to death. Consequently, a reverse shock cannot form and trigger fluid instabilities during the supernova. Only weak mixing driven by nuclear burning occurs in the earliest stages of the supernova, and it is too weak to affect the observational signatures of the explosion.
77 - Chi Huang , Hu Zou , Xu Kong 2019
The spectra of emission-line galaxies (ELGs) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digit Sky Survey (SDSS) are used to study the mass-metallicity relation (MZR) at $zsim0.8$. The selected sample contains about 180,000 massive star-forming galaxies with $0.6 < z < 1.05$ and $9 < {rm log}(M_{star}/M_{odot}) < 12$. The spectra are stacked in bins of different parameters including redshift, stellar mass, star formation rate (SFR), specific star formation rate (sSFR), half-light radius, mass density, and optical color. The average MZR at $zsim0.83$ has a downward evolution in the MZR from local to high-redshift universe, which is consistent with previous works. At a specified stellar mass, galaxies with higher SFR/sSFR and larger half-light radius have systematically lower metallicity. This behavior is reversed for galaxies with larger mass density and optical color. Among the above physical parameters, the MZR has the most significant dependency on SFR. Our galaxy sample at $0.6<z<1.05$ approximately follows the fundamental metallicity relation (FMR) in the local universe, although the sample inhomogeneity and incompleteness might have effect on our MZR and FMR.
286 - D. Karinkuzhi 2020
Among Carbon-Enhanced Metal-Poor (CEMP) stars, some are found to be enriched in s-process elements (CEMP-s), in r-process elements (CEMP-r) or in both s- and r-process elements (CEMP-rs). The origin of the abundance differences between CEMP-s and CEM P-rs stars is presently unknown. It has been claimed that the i-process, whose site still remains to be identified, could better reproduce CEMP-rs abundances than the s-process. We analyze high-resolution spectra of 25 metal-poor stars, observed with the high-resolution HERMES spectrograph mounted on the Mercator telescope, La Palma, or with the UVES/VLT and HIRES/KECK spectrographs. We propose a new, robust classification method for CEMP-s and CEMP-rs stars using eight heavy element abundances. The abundance profiles of CEMP-s and CEMP-rs stars are derived and there appears to be an abundance continuum between the two stellar classes. CEMP-rs stars present most of the characteristics of extrinsic stars such as CEMP-s, CH, Barium and extrinsic S stars, with an even larger binarity rate among CEMP-rs stars than among CEMP-s stars. Stellar evolutionary tracks of an enhanced carbon composition (consistent with our abundance determinations) are necessary to explain the position of CEMP-s and CEMP-rs stars in the HR diagram using Gaia DR2 parallaxes; they are found to lie mostly on the RGB. CEMP-rs stars can be explained as being polluted by a low-mass, low-metallicity TP-AGB companion experiencing i-process nucleosynthesis after proton ingestion during its first convective thermal pulses. The global fitting of our i-process models to CEMP-rs stars is as good as the one of our s-process models to CEMP-s stars. As such, CEMP-rs stars could be renamed as CEMP-sr stars, since they represent a particular manifestation of the s-process at low-metallicities. For these objects a call for an exotic i-process site may not necessarily be required anymore.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا