ترغب بنشر مسار تعليمي؟ اضغط هنا

General Properties of Recurrent Bursts from SGRs

39   0   0.0 ( 0 )
 نشر من قبل Valentin Pal'shin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R.L. Aptekar




اسأل ChatGPT حول البحث

General properties of SGR bursts are considered using observational data collected in the Konus catalog of SGR activity.

قيم البحث

اقرأ أيضاً

We propose that the strong millisecond extragalactic radio burst (mERB) discovered by Lorimer et al. (2007) may be related to a hyperflare from an extragalactic soft gamma-ray repeater. The expected rate of such hyperflares, $sim$ 20 - 100 d$^{-1}$ G pc$^{-3}$, is in good correspondence with the value estimated by Lorimer et al. The possible mechanism of radio emission can be related to the tearing mode instability in the magnetar magnetosphere as discussed by Lyutikov (2002), and can produce the radio flux corresponding to the observed $sim$ 30 Jy from the mERB using a simple scaling of the burst energy.
We present evidence for Quasi Periodic Oscillations (QPOs) in the recurrent outburst activity from SGR 1806-20 using Rossi X-ray Timing Explorer (RXTE) observations during November 1996. Searching for QPOs in a sample of 30 bursts at similar frequenc ies to those previously reported in the December 27, 2004 giant flare, we find evidence for a QPO in a burst at 648 Hz at 5.17{sigma} confidence level, lying within 3.75% from the 625 Hz QPO discovered in the giant flare. Two additional features are also detected around 84 and 103 Hz in two other bursts at 4.2{sigma} and 4.8{sigma} confidence level, respectively, which lie within 8.85% and 11.83% respectively from the QPO at 92.5 Hz also detected in the giant flare. Accounting for the number of bursts analyzed the confidence levels for the 84, 103 and 648 Hz becomes 3{sigma}, 3.6{sigma} and 3.4{sigma} respectively. Extending our search to other frequency ranges, we find candidates at 1096, 1230, 2785 and 3690 Hz in 3 different bursts with confidence levels lying between 4.14{sigma}-4.46{sigma}, which is reduced to 2.3{sigma}-3{sigma} after accounting for a certain confirmation bias in each case. The fact that we can find evidence for QPOs in the recurrent bursts at frequencies relatively close to those found in the giant flare is intriguing. We examine the candidate QPOs in relation with those found in the giant flare and discuss their possible physical origin.
There is consensus in the current literature that stable states of asynchronous irregular spiking activity require (i) large networks of 10 000 or more neurons and (ii) external background activity or pacemaker neurons. Yet already in 1963, Griffith showed that networks of simple threshold elements can be persistently active at intermediate rates. Here, we extend Griffiths work and demonstrate that sparse networks of integrate-and-fire neurons assume stable states of self-sustained asynchronous and irregular firing without external input or pacemaker neurons. These states can be robustly induced by a brief pulse to a small fraction of the neurons, or by short a period of irregular input, and last for several minutes. Self-sustained activity states emerge when a small fraction of the synapses is strong enough to significantly influence the firing probability of a neuron, consistent with the recently proposed long-tailed distribution of synaptic weights. During self-sustained activity, each neuron exhibits highly irregular firing patterns, similar to experimentally observed activity. Moreover, the interspike interval distribution reveals that neurons switch between discrete states of high and low firing rates. We find that self-sustained activity states can exist even in small networks of only a thousand neurons. We investigated networks up to 100 000 neurons. Finally, we discuss the implications of self-sustained activity for learning, memory and signal propagation.
In this paper, we investigate spectral properties of the adjacency tensor, Laplacian tensor and signless Laplacian tensor of general hypergraphs (including uniform and non-uniform hypergraphs). We obtain some bounds for the spectral radius of general hypergraphs in terms of vertex degrees, and give spectral characterizations of odd-bipartite hypergraphs.
The distribution of GRB durations is bimodal, but there is little additional evidence to support the division of GRBs into short and long classes. Based on simple hardness ratios, several studies have shown a tendency for longer GRBs to have softer e nergy spectra. Using a database of standard model fits to BATSE GRBs, we compare the distributions of spectral parameters for short and long bursts. Our preliminary results show that the average spectral break energy differs discontinuously between short and long burst classes, but within each class shows only a weak dependence on burst duration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا